
The InterOperability Platform Manual
IOP version 0.14

Ian A. Mason∗

University of New England, Armidale, NSW, Australia
iam@turing.une.edu.au

Carolyn L. Talcott†

SRI, Menlo Park, California, USA
clt@csl.sri.com

January 7, 2006

An Actor

An Actor

An Actor

The Registry
An Actor

A Two Process Actor

∗Most of the work described here was done while holding an International Fellowship at SRI,
Menlo Park, partially supported by an Australian Research Council Discovery grant DP0345664,
and SRI grant CCR-0234462.

†Partially supported by DARPA through Air Force Research Laboratory Contract F30602-02-
C-0130, NSF grants CCR-9900326, CCR-0234462 Office of Naval Research Contract N00014-01-
0837.

1

Contents

1 Current Version & Recent Changes 3

2 Command Line Arguments 3

3 The General Architecture 3

4 The GUI Front End 6

5 The Actors 7
5.1 The System Actor . 7

5.1.1 The System start Request . 8
5.1.2 The System stop Request . 9
5.1.3 The System select Request 10

5.2 The GUI Actor . 11
5.3 The Graphics 2D Actor . 11
5.4 The Filemanager Actor . 12

5.4.1 The Filemanager read Request 12
5.4.2 The Filemanager write Request 13
5.4.3 The Filemanager append Request 13
5.4.4 Filemanager Notes . 14

5.5 The Socketfactory Actor . 14
5.5.1 The Socketfactory openclient Request 14
5.5.2 The Socketfactory openlistener Request 15
5.5.3 SocketFactory Notes . 16

5.6 The Socket Actor . 16
5.6.1 The Socket read Request . 16
5.6.2 The Socket write Request . 17
5.6.3 The Socket close Request . 17

5.7 The Listener Actor . 18
5.8 The Listener close Request . 18

5.8.1 Listener Notes . 19
5.9 The Executor Actor . 19

5.9.1 The Executor executor Request 19
5.9.2 Executor Notes . 20

6 The .ioprc File 20

7 Writing and Incorporating New Actors 21
7.1 The System name request . 23
7.2 The System enroll request . 24
7.3 The System unenroll request . 24

2

1 Current Version & Recent Changes

The current version of IOP is 0.14. An earlier version of IOP (0.08) was de-
scribed in [1] and is superseded by this one. The most recent changes in the system,
in going from 0.12 to 0.14, is the promotion of the registry to the status of an ac-
tor, called the system actor, and the stable incorporation of the Graphics 2D actor.
These changes, particularly the former, have allowed the system to be configurable
via instructions in the .ioprc file. The default now is for IOP to only start up
with the minimal set of actors: the system and the GUI front end. This has the con-
sequence that the optional Maude file on the command line is no longer supported.

The registry is the same UNIX process as the system actor, so in this sense they
are synonymous. However there are more facets to the registry than just its role as
the system actor, so we will not use the two terms interchangeably. Prefering the
term registry to emphasize its multifaceted nature, when indeed we are talking
about more than just its role as an actor in the system.

2 Command Line Arguments

The usual way to start up IOP is via the command:

iop

IOP understands three command line switches:

-a (default actors)

-n (no windows)

-d (debug flag on)

and of course all eight combinations. The -a flag will cause IOP to create at
startup, in addition to the system and GUI actors, the other five actors described in
section 5. It also invalidates any system actor requests that may appear in the users
.ioprc file. The -n will prevent the system from starting the GUI front end, and
use, instead, a minimalistic command line loop. Finally the -d turns on debugging
flags in both the iop and registry processes, and is used for debugging purposes.

3 The General Architecture

IOP’s design is based on the actor model of distributed computation [2]. IOP con-
sists of a pool of actors that interact with one another via asynchronous message

3

passing. The pool of actors is dynamic, it may grow or shrink as time goes by. Ac-
tors can be initial actors, created at startup, or be created by another actor already
in the system in response to some event, such as an actor receiving a message, or
reacting to some external action, such as a connection being made to a socket. New
actors can also be created by explicitly asking the system actor to do so, by send-
ing it a start request. Though strictly speaking this is just a special case of an actor
being created in response to an event. The collection of actors created at startup is
easily configurable and new actors can be designed and added to the system.

An actor in IOP usually is simply a UNIX style process that has been registered
with the system according to a simple procedure. Part of this registration process
involves allocating three FIFOs, or UNIX style named pipes, and redirecting the
actor’s stdin, stdout and stderr file descriptors to these special files [3].

Invoking IOP from the command line results in the following startup procedure
taking place. The first process, being the main of IOP, parses the command line
arguments, and creates the registry or system actor, the GUI actor (if the -n flag
is absent), and the other five actors if the -a flag is present. After startup the
main acts mainly as a signal handler, ensuring clean and graceful shutdown. If
the -a flag is absent, then it is the registry that creates and configures the system
according to the instructions in the .ioprc file. The registry keeps track of the
current actors, and maintains the lines of communication between these actors. The
GUI front end, pictured in figure 4, provides the user with an easy means of sending
messages to any of the actors in the system. The upper part can be used to compose
messages to be sent to any of the IOP actors. A file of precomposed messages
can be loaded, see section 6, and message edits can be saved. The lower part
displays any output from the actors that is not inter-actor communication (errors or
messages to the user).

The registry maintains a list of all the actors that are registered with it. It
performs several functions, and maintains three lines or forms of communication.
The three forms of communication are: inter-actor communication, messages sent
from one actor to another; meta-actor communication, actors notifying the registry
of the birth or death of actors; and interface communication, communication be-
tween the registry and actors with the GUI front end. Each type of communication
has a dedicated infra-structure that supports it. In the case of inter-actor communi-
cation, each registered actor in the system has three FIFOs, in /tmp/, associated
with it. For each actor in the system there are three dedicated registry threads,
one to monitor each FIFO that is associated with the actor’s stdin, stdout and
stderr file descriptors. The registry also has two FIFOs (again in /tmp/) that
are used in various meta-communications, such as the registering of a newly cre-
ated actor, or from an actor politely informing the system of its imminent demise.
All files in /tmp/ incorporate into their name the unique process identifier of the

4

main process associated with them, hence multiple IOP’s on the same machine
do not interfere with one another. Finally the registry communicates with the GUI
front end by using two socket connections established at startup.

Inter-actor communication is purely ASCII text, and is implemented in two
layers, the user layer, and the transport layer. In the transport layer a message
consists simply of a line of text representing a number (i.e an integer in base ten),
followed by that specified number of bytes. The user layer, implemented on top
of the transport layer, consists of the address of the target actor, the address of the
sending actor, followed by the body of the message, each on a new line:

maude
graphics
show mauderule 25

This same message can be sent from the GUI by selecting Maude as the desti-
nation, and sending the text (graphics show mauderule 23). Either way
the message is transmitted in the transport layer as the sequence of bytes:

33\nmaude\ngraphics\nshow mauderule 25\n

Simple libraries implement the user layer on top of the transport layer, and
allow for reliable cross platform and architecture independent communication.

5

4 The GUI Front End

The GUI front end, depicted in figure 4, allows the user to interact with any
actor in the system. It consists, from top to bottom, of a menu bar, a button panel,
the input window, and the output window. There are multiple redundancies in the
design of this GUI interface. Anything that can be done with the menu bar, can
also be done without it. Either by control sequences, or in the case of sending
messages, by using the button panel. The menu bar can be consulted to establish,
on a particular operating system, the corresponding control sequences.

The input window is a rudimentary text area allowing the user to format, and
send messages to any particular actor in the system. The text sent to the chosen
actor can either be a single line of text, the selected or highlighted text, of the whole
buffer. Selecting the target actor is done by using the choice widget in the right side
of the button panel. This can also be done programmatically in the .ioprc file
(see section 4 for more details), or by messaging the system actor (see section 5.1
for more details).

6

The text in this text area can be loaded in one of three ways: manually using
either the menu bar, or the control sequence associated with file loading; by speci-
fying the full path of the file as the first line in the user’s .ioprc file, see section 6;
or automatically at startup, by naming the file input.txt, and placing it in the
directory where you executed the iop command. This last method is usually the
most practical. One has a directory with various files one is using for the current
project, and amongst these is the input.txt file, that serves a role similar to a
rudimentary makefile.

The output and error window is a non-editable text area that displays the error
streams of all the actors in the system, as well as any actor message that is sent to
an unrecognized actor, a name of an actor not recognized by the system. Typically
any message addressed to the user actor will show up here, as long as the system
is configured so that there is no bona fide actor by that name.

5 The Actors

The IOP system currently comes with seven built-in actors. They are: the system
actor, the GUI actor, the maude actor, the graphics 2D actor, the executor actor, the
filemanager actor, and the socketfactory actor.

These seven may all be launched with the system at start up by the command
iop -a. Only the first two are launched by default, using the command iop.
Only the first is compulsory and it alone is launched using the command iop -n.
Alternately, each individual actor (other than the system actor) may be explicitly
started up by requesting the system actor to do so. We describe actor each in turn.

5.1 The System Actor

The first major difference between version 0.12 and 0.14 of IOP is the elevation
of the registry to the status of an actor in the system. This was done to enable
the starting pool of actors to be easily customizable, either by directly sending the
system actor, as the registry is now known, a request to either start or stop an actor.
Or by describing the desired actors at startup in the .ioprc file, see section 6 for
more details. The system actor also responds to a select request, which results in
the specified actor being chosen as the currently selected actor in the GUI front
end. Again, such a request can also be made from the .ioprc file. These three
commands make up the configuration interface to the system actor. There is also a
new registration interface that consists of three other requests. These three requests
that the system actor responds to are: a name request, an enroll request, and an
unenroll request. These requests are designed to make it relatively easy for users

7

to program their own actors into the system. In particular, for these new actors to
be able to spawn new actors in the system, by using this registration interface. We
will discuss the configuration interface here, and leave the registration interface to
section 7.

5.1.1 The System start Request

A start request to the system actor can take one of three forms. If sent from another
actor it takes the form:

system
<sender>
start
<name> <executable> <argv[1]> ... <argv[N]>

If it is sent from the IOP GUI front end it takes the form:

(<sender> start <name> <executable> <argv[1]> ... <argv[N]>)

If it is requested within the .ioprc file, then it takes the form:

start <name> <executable> <argv[1]> ... <argv[N]>

In response to such a request, the system first finds a unique new actor name based
on <name>1, it then creates, and registers with the system, an actor whose exe-
cutable is named by <executable>, whose argument array is argv, argv[0]
is set to be the actor’s unique name, call it nameN. If the system actor successfully
creates a new actor, it replies with

<sender>
system
startOK nameN

If is unsuccessful it replies with:

<sender>
system
startFAILED nameN

The start request is rather robust and succeeds even if the newly created actor is
stillborn, for example if <executable> fails to name an executable file in the
file system. Down in the very depths of the implementation the new actor is created
via a new process, suitably configured, executing:

1If <name> is unique as is, then this is the name chosen. Otherwise the addition of the smallest
numeric suffix that makes the name unique is chosen.

8

execvp(executable, argv);
// report error and unregister here
exit(EXIT_FAILURE);

where argv is as described above.2 If this call to execvp fails, an error report
is sent to the GUI, and the stillborn actor is removed from the registry data struc-
tures. However, the parent actor will still respond with a success message. It is the
new actor’s process that sees the failure of the execvp, whereas it is the parent
that replies to the request. Now the child could reply with failure, but the par-
ent would still reply with success, since the parent doesn’t see the failure. Thus
startFAILEDwill only happen for pretty fatal reasons like running out of mem-
ory etc.

Some simple examples of start requests are:

(user start maude iop_maude_wrapper /usr/local/maude-linux/bin)
(user start maude iop_maude_wrapper /usr/local/maude-linux/bin)
(user start graphics2d iop_graphics2d_wrapper /usr/iop)
(user start filemanager iop_filemanager)

In the case that the newly created actor itself wishes to create actors, it will
need to be able to register them with the registry. To do this it must be prepared
to receive the names of the FIFOs to use. For this we use the strings *FIFO_IN*
and *FIFO_OUT* to indicate where in the argv array, the newly created actor
expects them. So for example to start the socketfactory actor, by hand, requires the
following incantations:

(user start socketfactory iop_socketfactory *FIFO_IN* *FIFO_OUT*)

These wild cards are only needed in the case of actors, which themselves pro-
create, that are written in the earlier versions of IOP, that do not make use of the
registration interface to the system actor, but rather use the meta-actor communi-
cation infrastructure. We will describe in section 7 how to write actors and incor-
porate them into the system.

5.1.2 The System stop Request

A stop request to the system actor takes the form

2There is, by force, one exception to this rule. If the executable is java, then argv[0] is also
java. This is because java refuses to go by any other name. For this reason, if an actor written
in java needs to know its name, then we implement it as a two process actor, the first process is a
simple C wrapper process that acts as a go between. For example, this is true of the Graphics 2D
actor.

9

system
<sender>
stop
<name>

or from the IOP GUI front end:

(<sender> stop <name>)

In response to such a request the system terminates the actor whose name is <name>,
using the kill signal, and deregisters it from the system. Deregistering an actor in-
volves removing it from all of the system’s internal data structures, in particular any
FIFOs associated with the actor are removed from the file system. If successful, it
replies with

<sender>
system
stopOK <name>

If is unsuccessful, it replies with:

<sender>
system
stopFAILED <name>

Though the only reason it can be unsuccessful is if <name> is not recognized as a
valid actor name in the system. Requesting that the system actor stop itself is the
same as shutting down IOP gracefully.

5.1.3 The System select Request

A select request to the system actor takes on of three possible forms. As a message
sent to the system actor it takes the form:

system
<sender>
select
<name>

As a message sent from the IOP GUI front end it takes the form:

(<sender> select <name>)

Or as a configuration request in the .ioprc file, it takes the form:

select <name>

In response to such a request the system requests that the GUI front end sets the
named actor to be the selected actor. The selected actor in this sense is the actor
whose name appears in the choice widget, and who is the target of any requested
message sent from the GUI. There is no reply to a select request.

10

5.2 The GUI Actor

Currently the GUI actor accepts no actor requests. Its role in the system is purely
as a graphical user interface.

5.3 The Graphics 2D Actor

The Graphics 2D Actor is simply an entry point to the interpreter of the JLambda
language [4]. Thus the generic request takes the form

graphics2d
<sender>
<jlambda expression>

or from the IOP GUI front end:

(<sender> <jlambda expression>)

which simply results in the Graphics 2D actor evaluating the supplied expression
in a separate thread of execution.3 There is no built in response to such a request.
If a request is desired, then it should be coded into the form of the expression to be
evaluated. For example if one sends the following two messages to the Graphics
2D actor from the GUI front end

(user
(define respond

(actor msg)
(sinvoke "g2d.util.ActorMsg"

"sendActorMsg"
java.lang.System.out
(concat actor

"\ngraphics2d\n"
msg
"\n"))))

(user (apply respond "user" "hey!"))

the first will result in no response, while the second will subsequently respond with

user
graphics2d
hey!

3In the examples we assume that we are talking to the first actor enrolled with that name, if
there were several such actors with the same name prefix, then messages would be addressed to, for
example, graphics2d<n>

11

and will be displayed in the GUI’s output and error window.
While the Graphics 2D actor was originally designed to process and display

graphical information, its functionality far exceeds this. Since the JLambda lan-
guage provides an interpreted interface to the entire Java class libraries, most
things, if they can be done in Java, can be done by suitable requests to the Graphics
2D actor. We plan to produce JLambda libraries that make the remaining actors in
this section largely redundant. Though there is nothing to stop the user from doing
this themselves.

5.4 The Filemanager Actor

The Filemanager actor provides rudimentary access to the underlying file system.
It can be asked to read from, write to, and append to files.

5.4.1 The Filemanager read Request

A read request to the Filemanager actor takes the following form:

filemanager
<sender>
read
<file>

or from the IOP GUI front end:

(<sender> read <file>)

In response to such a request, the filemanager attempts to open the specified file,
lock it, and read its contents. If successful it replies to the <sender> with the
appropriate contents. If it fails it logs the reason out to the error logging file and
replies with a failure message.

<sender>
filemanager
contents <file>
<text>

or

<sender>
filemanager
readFailure
<file>

12

5.4.2 The Filemanager write Request

A write request to the Filemanager actor takes the following form:

filemanager
<sender>
write
<file>
<text>

or from the IOP GUI front end:

(<sender> write <file> <text>)

In response to such a request, the filemanager attempts to open the file, lock it, and
write the supplied text out to the file. The file is created if it doesn’t already exist.
The previous contents of the file are lost. If it fails it logs the reason out to the error
logging file, and replies with a failure message.

<sender>
filemanager
writeOK
<file>

or

<sender>
filemanager
writeFailure
<file>

5.4.3 The Filemanager append Request

An append request to the Filemanager takes the following form:

filemanager
<sender>
append
<file>
<text>

or from the IOP GUI front end:

(<sender> append <file> <text>)

In response to such a request, the filemanager attempts to open the file, lock it, and
append the supplied text out to the file. The file is created if it doesn’t already exist.
If it fails it logs the reason out to the error logging file, and replies with a failure
message.

13

<sender>
filemanager
appendOK
<file>

or

<sender>
filemanager
appendFailure
<file>

5.4.4 Filemanager Notes

The filename in any of the filemanager requests may be of the form ˜/path. Here
˜ will be interpreted as the home directory of the user running this instance of
iop. All file locking is done via fcntl, except on Mac OS X, where it is done
via flock because of Mac OS X fcntl idiosyncrasies.

5.5 The Socketfactory Actor

The Socketfactory Actor knows the number of:

• clients it has successfully created, <clientNo>.

• listeners it has successfully created, <listenerNo>.

5.5.1 The Socketfactory openclientRequest

An open client request to the Socketfactory actor takes the following form:

socketfactory
<sender>
openclient
<host>
<port>

or from the IOP GUI front end:

(<sender> openclient <host> <port>)

In response to such a request, it attempts to connect to the specified <host> and
<port>. If successful it creates a new socket actor corresponding to that socket
connection. It then replies the the request with the name of the new socket actor.
The created actor’s name is of the form:

14

"clientsocket<clientNo>"

If it is successful it replies with a message of the form:

<sender>
socketfactory
openClientOK
<client socket name>

Otherwise it replies with:

<sender>
socketfactory
openClientFailure

5.5.2 The Socketfactory openlistenerRequest

The open listener Socketfactory request takes the following form:

socketfactory
<sender>
openlistener
<port>

or from the IOP GUI front end:

(<sender> openlistener <port>)

In response to such a request, it attempts to create a listening socket on the given
port. If successful it creates a new listener actor (with client actor <sender>) that
encapsulates that listening socket. The name of the listener actor is of the form:

"listener<listenerNo>"

If successful it responds with the message:

<sender>
socketfactory
openListenerOK
<listener name>

Otherwise it responds with a failure notification:

<sender>
socketfactory
openListenerFailure

15

5.5.3 SocketFactory Notes

The SocketFactory actor has a signal handler that waits on any child in response to
a SIGCHLD signal delivery. This prevents the exiting of any spawned actors from
remaining in the system as zombies.

5.6 The Socket Actor

The Socket Actor knows the socket that it corresponds to, and whether or not it is
still open. It also keeps track of the number of requests, though this is not used.

5.6.1 The Socket read Request

The Socket read request takes the following form:

socket
<sender>
read
<no of bytes>

or from the IOP GUI front end:

(<sender> read <no of bytes>)

In response to such a request, if the socket is still open it attempts to read the
specified number of bytes from the socket. This is taken to be an upper limit. If
this read is successful (i.e. reads a non-zero number of bytes) it then replies with
the number of bytes read, and the actual bytes read. If it fails either because the
socket has been closed, or the read failed, then it logs the reason, and replies with
a failure message.

If successful it replies with:

<sender>
socket
readOK
<no of bytes read>
<bytes>

or

<sender>
socket
readFailure

otherwise.

16

5.6.2 The Socket write Request

The Socket write request takes the following form:

socket
<sender>
write
<no of bytes>
<bytes>

or from the IOP GUI front end:

(<sender> write <no of bytes> <bytes>)

In response to such a request, if the socket is still open, and <no of bytes>
is nonzero, it attempts to write the specified number of bytes to the socket. If this
write is successful (i.e. it wrote some bytes successfully out to the socket) it then
replies with the number of bytes actually written. If it fails either because the socket
has been closed, or the write failed, it logs the reason and replies with a failure
message. If the <no of bytes> was larger than the number of <bytes> it
was supplied with then it writes as much as it can.

If successful it replies with:

<sender>
socket
writeOK
<no of bytes written>

or

<sender>
socket
writeFailure

otherwise.

5.6.3 The Socket close Request

The Socket close request takes the following form:

socket
<sender>
close

or from the IOP GUI front end:

(<sender> close)

17

In response to such a request, if the socket is still open it closes it, and remembers
this fact, so subsequent requests will always fail. If the socket is already closed,
this like all the other requests will result in a fail reply. Upon closing the actor
unregisters with the registry, then exits. The process of unregistering is not instan-
taneous.

If successful it replies with:

<sender>
socket
closeOK

or

<sender>
socket
closeFailure

otherwise.

5.7 The Listener Actor

The Listener Actor knows the listening socket that it is managing. It also knows
the number of connections that have been made. A listener actor also knows a
client actor <client>, the one that requested its creation. It is to this actor that
it sends the names of the socket actors it generates per incoming connection. The
listener has two threads. One thread monitors the listening socket, the other handles
incoming messages.

5.8 The Listener close Request

listener
<sender>
close

or from the IOP GUI front end:

(<sender> close)

If the listener socket is still open it closes it, and remembers this fact, so subsequent
requests will always fail. If the listener is already closed, this will result in a fail
reply. After successfully completing this shutdown procedure the actor unregisters
with the registry, then exits. The process of unregistering is not instantaneous.

If successful it replies with the message:

18

<sender>
listener
closeOK

otherwise it replies with a failure notification:

<sender>
listener
closeFailure

The listening thread does not accept commands.
All it does is listen on it’s port, when a connection is made it creates a new

socket actor, whose name will be of the form:

"connectionsocket.<listener pid>.<requestNo>"

and replies:

<client>
listener
newConnection
<connection socket name>

5.8.1 Listener Notes

The Listener actor has a signal handler that waits on any child in response to a
SIGCHLD signal delivery. This prevents the exiting of any spawned actors from
remaining in the system as zombies.

5.9 The Executor Actor

The executor actor allows other actors to execute commands in the underlying op-
erating system.

5.9.1 The Executor executor Request

An Executor executor request takes the following form:

executor
<sender>
<command>

or from the IOP GUI front end:

(<sender> <command>)

19

In response to such a request, the executor forks off a child process, which using
the C routine system() executes the command specified by calling

/bin/sh -c <command>

Once the system call has ended, the child process responds to the <sender>with
the appropriate exit code, as described by the standard C library.

<sender>
executeOK
<exit code>

Note that because the forked child will share the parent’s file descriptor table, any
output to stdout by the child will be directed to the registry, and presumably
result in confusion. For this reason it is best to design one’s commands to be silent.
Output to stderr will, like any other actor’s error stream, be redirected to the
output and error window of the GUI, see section 4 for more details.

5.9.2 Executor Notes

The Executor actor has a signal handler that waits on any child in response to a
SIGCHLD signal delivery. This prevents the exiting of any spawned actors from
remaining in the system as zombies.

6 The .ioprc File

The .ioprc file, which should be situated in the users home directory, allows for
customization of IOP. Here is a sample:

/home/iop/SRI/PlethoraOfDemos/input.txt
#this file is /home/iop/.ioprc
#this is a comment
font size = 12
#font style = bold
font type = Lucinda Sans
show font familes = true
window width = 550
window height = 550
start maude iop_maude_wrapper /usr/local/maude-linux/bin
#This is the location of my maude ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ
#Yours might vary!
#start socketfactory iop_socketfactory *FIFO_IN* *FIFO_OUT*
start graphics2d iop_graphics2d_wrapper /usr/iop
#This is the location of my iop binaries ˆˆˆˆˆˆˆˆ

20

#Yours might vary!
#start executor iop_executor
#start filemanager iop_filemanager
#start pvs iop_pvs_wrapper
select maude

An IOP started with such a .ioprc file will have a square geometry. It will
also have as its font twelve point Lucinda Sans. It will include a long list of all
fonts avaiable in the system in its initial error window. It will consist of the system,
GUI, Maude, and Graphics 2D actors. The currently selected actor in the GUI
choice widget will be Maude.

7 Writing and Incorporating New Actors

Incorporating new actors into the system is relatively simple, especially if the new
actors themselves do not require the ability to create other new actors. Typical ex-
amples of these actors would be new formal reasoning tools. Incorporating new
actors that can themselves create other actors requires either following the required
protocols necessary for meta-actor communication with the registry, see section 3
for a description of the various forms of communication, or using the newer regis-
tration interface with the system actor.

We will deal with the simple case of actors that do not need to procreate, before
covering the more complex case. An new actor will, invariably, be incorporated
into the system by a start request to the system actor, section 5.1, either directly
or at startup in the .ioprc file. Consequently, we begin by looking at this step in
a little more detail.

A start request to the system actor takes the form:

system
<sender>
start
<name> <executable> <argv[1]> ... <argv[N]>

In response to such a request, the system first finds a unique new actor name based
on <name>. If <name> is unique as is, then this is the name chosen. Otherwise
the addition of the smallest numeric suffix that makes the name unique is chosen.
It then creates, and registers with the system, an actor whose executable is named
by <executable>, whose argument array is argv, argv[0] is set to be the
actor’s unique name, call it nameN. The creation process involves:

• Creating three FIFOs, one each for standard in, out and error. These FIFOs
are created in /tmp/, and are called

21

iop_<pid>_<nameN>_IN
iop_<pid>_<nameN>_OUT
iop_<pid>_<nameN>_ERR

respectively. Here <pid> is the process identifier of the main iop process.

• A new process is forked off, and its standard in, out and error streams are
redirected to the corresponding FIFOs.

• The new process then executes

execvp(executable, argv);
exit(EXIT_FAILURE);

where argv is as described above.

• Finally the new actor is registered with the system. This involves, amongst
other things, creating separate threads to monitor both out and error streams
of the newly created actor.

As a consequence of this, writing an actor involves paying attention to the name
one is christened with, i.e. argv[0], and using the appropriate message format
when writing to standard out, namely the transport layer described in section 3.
In the transport layer a message consists simply of a line of text representing a
number (i.e an integer in base ten), followed by that specified number of bytes. For
example in Java this can be achieved using the following library

public static void sendActorMsg(OutputStream dest, String body){
String message = "" + body.length() + "\n" + body;
try{

dest.write(message.getBytes("US-ASCII"));
}catch(Exception e){ IO.err.println(e); }

}

routine in the ActorMsg of the package g2d.util, as described in section 5.3.
The new actor will also need to parse incoming input on standard in. This also
follows the same format of line of a line of text representing a number, followed by
exactly that many bytes. Due to historical reasons the text that follows is enclosed
in parentheses, with the parentheses being included in the byte count.

The above describes how the system actor creates an actor. If an actor, other
than the system actor, needs to create another actor, the process described above
is modified slightly in two places. Firstly, the actor doing the creating must vouch
for the uniqueness of the newly created actor’s name. Secondly, the system actor
must be notified of it’s creation, so that messages to and from the new actor can be

22

monitored. This can either be done using the low level meta actor communication,
or else by using the newer registration interface with the system actor.

The registration interface of the system actor involves three new requests: an
unique name request, an enrollment request, and an unenrollment request. The
unique name request allows an actor to obtain, from the system actor, a new unique
name for it to use in christening a newly spawned actor. This newly spawned
actor can then be registered with the system using an enrol request, the request
must contain the necessary information for the system to incorporate it into its
communication infrastructure. A spawned actor can exit the system by sending the
system an unenroll request.

7.1 The System name request

In order to guarantee that actors in the system have unique names, the system actor
provides such a service. A unique name request to the system actor takes the form:

system
<sender>
name
<name>

or if it is sent from the IOP GUI front end it takes the form:

(<sender> name <name>)

In response to such a request, the system first finds a unique new actor name based
on <name>. If <name> is unique as is, then this is the name chosen. Otherwise
the addition of the smallest numeric suffix that makes the name unique is chosen.
If nameN is this unique name, then the system actor responds with the message

<sender>
system
nameOK <name> nameN <iop pid>

where <iop pid> is the unique process identifier of the current iop system. If
the request cannot be satisfied, then the system responds with a failure message.

<sender>
system
nameFAILED <name>

The participating actor is then free to use this name to create a new actor.
This involves, amongst other things, making the appropriate FIFOs, redirecting
the new processes standard streams to these FIFOs, and informing the new actor
of its unique name. The process identifier of the iop process is included in the
reply to assist in making sure the necessary FIFOs will be unique to this particular
running IOP system. The spawned process can then be registered with the system
using the enroll request.

23

7.2 The System enroll request

Once a new actor has been spawned by another actor in the system, it needs to
be registered with the system actor, so that, for example, it’s out going mail can
be handled, and any incoming mail can be forwarded. To register an actor the
system needs to know it’s unique name (as agreed with the system by a prior name
request), its unique process identifier (so it can be shut down at the appropriate
time), and the names of the FIFOs (so mail can be handled, and later at shutdown,
they can be removed from the file system). An enroll request to the system actor
takes the form:

system
<sender>
enroll
<name>
<pid>
<in_fifo>
<out_fifo>
<error_fifo>

or if it is sent from the IOP GUI front end it takes the form:

(<sender> enroll <name> <pid> <in_fifo> <out_fifo> <error_fifo>)

If the system actor successfully registers the new actor, it replies with

<sender>
system
enrollOK <name>

If is unsuccessful it replies with:

<sender>
system
enrollFAILED <name>

7.3 The System unenroll request

When voluntarily exiting the system, it is regarded as polite to notify the system.
This allows the system to remove the FIFOs from the file system, and reuse the
name if required. This is done via the unenroll request. An unenroll request to
the system actor takes the form:

system
<sender>
unenroll
<name>

24

or if it is sent from the IOP GUI front end it takes the form:

(<sender> unenroll <name>)

The system actor does not reply directly to the sender, since it may no longer be a
going concern. It does send the following to the standard error stream:

<sender>
system
unenrollOK <name>

If is unsuccessful it sends:

<sender>
system
unenrollFAILED <name>

so either way, some response will appear in the lower GUI window.

References

[1] I. A. Mason and C. L. Talcott. IOP: The InterOperability Platform & IMaude: An
Interactive Extension of Maude. In International Workshop on Rewriting Logic and
its Applications (WRLA 2004), Electronic Notes in Theoretical Computer Science.
Elsevier Science, 2004.

[2] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, Cambridge, Mass., 1986.

[3] http://www.unix-systems.org. The Single UNIX Specification Version 3
Homepage.

[4] Ian A. Mason and David Porter and Carolyn Talcott. The JLambda Language. Tech-
nical Report 05-232, MSCS, University of New England, January 2005. Available at
http://mcs.une.edu.au/˜iop/Data/Papers/.

25

