
The JLambda Language

version 3428
∗

Ian A. Mason†, David Porter‡, Carolyn Talcott§

July 21, 2019

∗Ben Funnell and Linda Briesemeister suggested improvements to this manual.
†SRI International, Menlo Park, California, USA, 94025. iam@csl.sri.com
‡david.a.porter@gmail.com
§SRI International, Menlo Park, California, USA, 94025. clt@csl.sri.com

1



Contents

1 Introduction 4

2 The JLambda Language. 4

2.1 Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Primitive Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.5 Numeric Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.6 Boolean Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.7 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7.1 Array Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.7.2 Array Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7.3 Array Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.9 Arbitrary Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.9.1 Object Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.9.2 Field Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9.3 Field Updating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.9.4 Method Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.10 Control Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10.1 Lexical Binding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.10.2 Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10.3 Lambda Expressions and Closures . . . . . . . . . . . . . . . . . . . . . . . . 15

2.10.4 Closure Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10.5 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.10.6 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10.7 Boolean Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10.8 Testing for Nullness and Objectness . . . . . . . . . . . . . . . . . . . . . . . 20

2.10.9 Quoting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Subtyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.12 File loading and single line comments . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.13 Class Names, Inner Classes, and Enums . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.14 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.15 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 The Glyphish Hierarchy 24

3.1 The Identifiable Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 The Attributable Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Glyphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Depiction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.2 Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.3 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 A Complete JLambda Program 29

4.1 The clicker’s Lexical Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Code Listing for clicker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2



5 Related Work & Related Issues 34

5.1 Projects Related to JLambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.1.1 SISC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.2 Kawa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.3 JScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.1.4 Skij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Overview of the JLambda Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Method and Constructor Resolution 39

6.1 Constructor Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Method Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.3 Variations on this Theme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

7 Debugging JLambda 41

7.1 The JLambda Read-Evaluate-Print Loop . . . . . . . . . . . . . . . . . . . . . . . . 41

7.2 Java Hooks into JLambda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Version History of JLambda 44

3



1 Introduction

The Java g2d package was designed and built as a visualization tool for formal rea-

soning systems such as Maude [1], PVS [2], and SAL [3]. It is a core component of the

IOP system [4], an infrastructure for allowing formal reasoning tools to interoperate,

and to interact with users in a transparent and illucidating graphical fashion.

The g2d package consists of two intertwined components:

1. An untyped Scheme-like lexically scoped interpreted language, called JLambda,

that provides a runtime interface to the Java class library, as well as some spe-

cific classes that make up the second component. The language makes very

heavy use of Java’s built in reflective capabilities. It is designed to be efficient

and expressive enough to enable full and faithful use of any built in Java classes.

2. A Java class hierarchy, called the Glyphish hierarchy [5], inspired by Joel

Bartlett’s now depricated Ezd package [6], and Java’s 2D [7] implementation,

that provides JLambda with sufficient built in classes to effectively construct,

at runtime, any desired interactive graphical object.

The Glyphish hierarchy has been designed both with several benchmark appli-

cations in mind, and with architectural generality. The hierarchy makes heavy use of

JLambda language. Closures, in particular, provide a rich language in which to de-

scribe control flow, event listeners, and even both static and non-static methods

of dynamically created classes.

This paper serves as a reference guide to the JLambda language. In section 2 we

provide a detailed overview of the constructs of the JLambda language. In section 3

we briefly describe the Glyphish hierarchy that makes up the second of the two in-

tertwined components of the g2d package. In section 4 we provide commentary on a

complete prototypical JLambda program. In section 5 we describe the implementa-

tion of the interpreter, and related work. In section 6 we describe the process by which

methods and constructors are resolved. The language itself, as well as the Glyphish

hierarchy are freely available [8]. In section 7 we describe some common debugging

techniques. Finally in section 8 we attempt to document the way the language has

evolved over the years.

2 The JLambda Language.

The Scheme like JLambda language is a minimalistic, call-by-value, left to right

evaluation ordering, lexically scoped language with closures. It has exactly the same

underlying primitive data types as Java, and access to all of Java’s built in packages

and classes, as well as any other Java classes found in the class path.

The syntax of the language is based on the usual Lisp notion of an S-expression.

An S-expression is either a string of characters or a List of S-expressions. A list is

either empty, or else contains at least one element.
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2.1 Keywords

Since version 1414 JLambda is parsed using Antlr4. As a consequence we have

introduced a set of keywords that are not allowed to be used as variables. They are:

null

boolean byte double char float int long short

load isnull isobject quote not throw fetch

- + * / % < > <= >= = == !=

narrow instanceof aget lookup

aset update supdate setattr

concat and or if getattr

seq do let define lambda apply invoke sinvoke

object for array mkarray try catch

reduce nreduce

tuple mktuple nth setnth

The only one that is not case insensitive is null.

2.2 Variables

A string of characters is interpreted as a variable, and is evaluated as follows: First see
if it is a static Java field e.g.

java.lang.String.class,

java.awt.Color.black,
The .class field does

not show up using re-
flection, and was added
as an add hoc case in
version 2178.

or

java.awt.geom.GeneralPath.WIND_EVEN_ODD,

if it is, return the current value of that field. Next see if it is bound in the current lexical

environment, if it is return its current value. Otherwise look to see if it is bound in

the current global environment, if it is return its current value, else throw an unbound

variable exception.

2.3 Definitions

Global definitions are made using the define form. We provide the usual two

Scheme versions. The more general form simply binds the value of <exp_N> (af-

ter evaluating the <exp_i> in left to right order) to the identifier <name> (which is

not evaluated):

(define <name> <exp_1> ... <exp_N>)

The more specific function or closure definition version is
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(define <name> (<param_1> ... <param_N>)

<exp_1> ... <exp_N>)

with N ≥ 0, which binds the name <name> to the corresponding closure, in the global

environment. If two define expressions assign to the same variable, the first is lost

or overwritten. Thus our define is similar to a set. Note that the latter is just an

abbreviation for a variant of the former form. Namely

(define <name>

(lambda (<param_1> ... <param_N>)

<exp_1> ... <exp_N>))

We will discuss closures, and lambda expressions shortly, along with the lexical bind-

ing form let.

2.4 Primitive Data

Primitive data is represented literally in JLambda by a primitive data expression,

which is a list of length two:

(<tag> <exp>)

Neither the <tag> position nor the <exp> is evaluated. The <tag> should be the
name of one of Java’s primitive data types:

boolean byte double char float int long short

while <exp> should be a Java literal, i.e. a sequence of characters. It is parsed as

the appropriate data, for example (int 10) will be parsed as the number 10, a

Java int, while (char ’C’) and (boolean false) will be parsed as Java’s

character C, and boolean false, respectively.

If parsing as such fails, then it is the assigned the default zero value of that Java data

type (false in the case of a boolean), and a warning to standard error is issued.

The usual Java literals can be used within these primitive data expressions, see

section 3.10, pages 19–27, of [9]. A representative sample is given here:

(char 88) ; evaluates to X

(char ’X’) ; evaluates to X

(char ’\130’) ; evaluates to X

(char ’\u0058’) ; evaluates to X

(char ’\n’) ; evaluates to a new line

(byte 127) ; evaluates to 127

(byte 128) ; evaluates to 0 and an error is reported

(int 123456) ; evaluates to 123456

(int 123456.7) ; evaluates to 0 and an error is reported

(float 2.5e+7) ; evaluates to 25000000

(boolean true) ; evaluates to true

(boolean 0) ; evaluates to false
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It should be pointed out that unadorned strings that consist solely of digits, for
example 1234567890, are bonafide variables, and can be bound both lexically and
globally. To regard them as numbers they need to be wrapped in a primitive data ex-
pression. For example, there is nothing wrong with initializing the global environment
via the following sequence of expressions.

(define 0 (int 0))

(define 1 (int 1))

...

(define 100 (int 100))

2.5 Numeric Operations

The usual arithmetic operations are provided. These work on numbers and chars,

not booleans. These follow the usual Java contortions, see section 5.6, pages 74–

76 of [9]. The expressions are evaluated, they are both widened to ints if they are

smaller. If one is bigger than an int they are both widened to that type, then the

operation is performed.

(- <nexp>)

(- <nexp> <nexp>)

(* <nexp> <nexp>)

(+ <nexp> <nexp>)

(/ <nexp> <nexp>)

(% <nexp> <nexp>)

To complete the arithmetic operations we provide a corresponding narrowing opera-

tion:

(narrow <nexp> <exp>)

This performs one of Java’s 23 primitive narrowing conversions (See section 5.1.3,

page 55, of [9]). The expressions are evaluated in left to right order. The second ex-

pression <exp> should evaluate to one of the strings: byte, short, char, int,

long, double, or float. Indicating the desired primitive data type. The first ex-

pression <nexp> should evaluate to a primitive numeric type (including char). The

usual loss of precision occurs. Attempting to specify a conversion that is not a narrow-

ing, e.g. (narrow (int 0) "long") will result in an exception being thrown.

2.6 Boolean Relations

We provide the usual binary relations on numbers:

(< <nexp> <nexp>)

(> <nexp> <nexp>)

(<= <nexp> <nexp>)

(>= <nexp> <nexp>)
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Non numeric arguments will cause an exception to be thrown.

Like most versions of Lisp or Scheme, there are two forms of equality. Both forms

of equality are total boolean relations defined on all types of data:

(= <exp> <exp>)

(== <exp> <exp>)

The expressions are evaluated in left to right order. The first form, =, is related to the

Scheme or Lisp equals predicate, while the second, ==, is more like eq.
The = expression then returns true if either both values are null, or neither

are null and both are booleans of the same value, or both numeric values and are
equal, or the second object satisfies the first object’s equals method. For example
(= (int 0) (long 0)) is true. The == is similar but uses pointer equality in
the case that both values are objects.

(== "foo" (object ("java.lang.String" "foo"))) ; false

(= "foo" (object ("java.lang.String" "foo"))) ; true

(= (char ’X’) (int 88)) ; true

(= (char ’X’) (boolean false)) ; false

These first two examples use the JLambda notation for calling Java’s contructors.

This notation will be explained shortly.

There is also an inequality expression:

(!= <exp> <exp>)

which is the same as (not (= <exp> <exp>)).

2.7 Arrays

Arrays may be constructed and manipulated in a direct manner.

2.7.1 Array Construction

There are two forms of array construction, one corresponds to making an empty ar-

ray of a particular size, the other corresponds to making an array, and assigning its

contents. A zeroed array of a particular length is constructed via:

(mkarray <type> <nexp>)

whereas an array is constructed and assigned via:

(array <type> <exp_1> .... <exp_N>)
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where N ≥ 0. In both cases <type> is either a primitive data tag or else the full

name of a Java class, <type> is not evaluated). In the mkarray case the expression

<nexp> should evaluate to an integer expression (or something smaller), and an array

of that length is constructed and zeroed, according to the nature of <type> in the

usual Java way. In the array case of an array of length N is constructed. There can be

zero or more elements <exp_i>. The contents of the constructed array are initialized

to be the values of the <exp_i>, evaluated from left to right. Each of the values

of the expressions should be able to be considered as an element of the class or type

represented by the <tag>. null is allowable in the case that the <tag> names a

Java class. Widening is allowable in the case of primitive data, as is upcasting to a

interface or a superclass in the case that the <tag> names a Java class. Otherwise an

exception will be thrown.
In the following examples a0 will be an array of length 88, that contains that many

falses, a1 will name an array of integers of length 3, whereas a2 will name an array
of objects of length 1.

(define a0 (mkarray boolean (char ’X’)))

(define a1 (array int (char ’X’) (byte 3) (short 7)))

(define a2 (array java.lang.Object java.lang.System.err))

(define a3 (array [I a1 a1)))

(define a4 (array [Ljava.lang.Object; a2 a2 a2))

To make an array of arrays one can use two different notations. Early versions

of JLambda required that you use Java’s quaint array type naming conventions (see

section 20.3.2, page 466, of [9]) where Java’s internal name for an array class consists

of the name of the element type ( B for byte, C for char, D for double, F for

float, I for int, J for long, S for short, Z for boolean, and Lclassname; for

classes or interfaces ) preceeded by one or more [ characters, depending on the depth

of array nesting. Thus [[[[Z would be the name for an array of arrays of arrays of

arrays of booleans.

In order to improve legibility, and maintain balanced parentheses, we also accept

names generated by the following two clauses:

1. The name of a class or primitive tag is acceptable.

2. If X is acceptable, then [X] is also acceptable, and represents the class of arrays

whose elements are those described by X.

In these above examples a3 is an array of integer arrays, and a4 is an array of object
arrays. They could also be declared by:

(define a3 (array [int] a1 a1)))

(define a4 (array [java.lang.Object] a2 a2 a2))
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2.7.2 Array Access

The elements of an array are accessed via:

(aget <array> <nexp>)

which returns the value of <array>[<nexp>], both <array> and <nexp> are
evaluated. For example, in the context of the previous array construction examples,
both of these expressions

(aget a1 (int 0))

(aget (aget a3 (int 1)) (int 0))

evaluate to 88. Whereas

(aget a2 (int 0))

(aget (aget a4 (int 1)) (int 0))

both evaluate to the same instance of the java.io.PrintStream class associated

with the standard error stream.

2.7.3 Array Assignment

Similarly an array may be set via:

(aset <array> <nexp> <expV>)

which sets <array>[<nexp>] to be the value of <expV>. It also returns the value

of <expV>. All three subexpressions are evaluated from left to right. As in the case of

array construction the value of the expression <expV> must be an allowable element

of the array.
So to continue our running examples, we could modify our integer array, a1, by

evaluating the expression

(aset a1 (int 0) (char ’Z’))

and accessing a1 would reflect this change

(aget a1 (int 0))

and evaluate to 90.
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2.8 Strings

The JLambda reader will interpret any string of characters beginning and ending with

the character " as the corresponding Java string (without the two occurrences of the

character "), actually "foo" is interpreted as (quote foo), which evaluates to the

Java String foo.

String concatenation is provided by the concatenation form:

(concat <exp> .... <exp>)

This form of String concatenation, evaluates each expression and concatenates the
result (using the toString() method of each object returned, and the usual conver-
sions in the case of primitive data). So a simple example of this is that

(concat (char ’\t’) "A " "short " "sentence.")

evaluates to a string that prints as

A short sentence.

If an argument to concat evaluates to null an exception is thrown.

2.9 Arbitrary Objects

2.9.1 Object Construction

Arbitrary Java objects may be constructed using the following form:

(object (<exp> <exp_1> ... <exp_N>))

where N ≥ 0. The arguments are, as usual, evaluated from left to right, the first

argument <exp> should evaluate to string representing the full name of a Java class.

If the so named Java class is not public an exception is thrown. The interpreter

then attempts to find a constructor for that class with matching arguments, and using

that constructor and the remaining arguments, constructs the appropriate object. If

no matching constructor is found an exception is thrown. We describe this resolution

process in more detail in section 6.
For example we can construct a generic object by evaluating

(object ("java.lang.Object"))

and a wrapper object of the character X via

(object ("java.lang.Character" (char ’X’)))

A slightly more interesting example is a frame

(define frame (object ("java.awt.Frame" "A Frame")))

that we will futz with shortly.

The null object reference is obtained by the special form:

(object null)

which evaluates to null.
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2.9.2 Field Access

Static and non-static fields of an object can be accessed via:

(lookup <target> <field>)

The <target> and <field> positions are evaluated from left to right. The inter-

preter then looks for a field belonging to the object that the <target> evaluates to.

The value of that field is returned. If no corresponding field is found an exception is

thrown. If <target> does not evaluate to an object an exception is also thrown.
For example the following expressions both evaluate to

(lookup a1 "length")

(lookup a4 "length")

to the integer 3.1

It is, of course, the runtime type of the value of <target> that is used in deter-

mining the appropriate field, and its value. (Since this is an interpreted language, there

is no sensible notion of compile time type.) Thus static fields are probably best

looked up via the class rather than an instance if there is the possibility of ambiguity.
The value of a static field may also be accessed from the class via the usual notation

java.lang.Math.PI

2.9.3 Field Updating

In early versions of JLambda we did not provide any support for the setting of fields,
either instance or static. This was not because it was problematic, but simply be-
cause we thought it would be unnecessary, well designed classes enforce object en-
capsulation of state. If an object’s fields are supposed to be updatable, the class will
provide methods to do so. Unfortunately, this was overly optimistic, some built in Java
classes are no more sophisticated than C structs, for example

java.awt.GridBagConstraints

Consequently, we now provide means of setting the values of fields, either instance

or static.

Static and non static fields of an object may be invoked using the following form:

(update <target> <field> <exp>)

The arguments are evaluated from left to right, and then the interpreter attempts to

update the field, whose name is the value of <field> (which should be a String),

to the value of the expression <exp>. The return value of the entire expression is the

new value of the field.
Thus for example we could create two identical points as follows:

1That these evaluate correctly is due to an ad hoc clause in our interpreter, since from the point

of view of Java’s reflection API, length is not a field of an array, contradicting the Java language

specification, see section 10.7, page 197, of [9]
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(define p1 (object ("java.awt.Point" (int 50) (int 50))))

(define p2 (object ("java.awt.Point")))

(update p2 "x" (int 50))

(update p2 "y" (int 50))

Alternately, these last two expressions could be abbreviated to:

(update p2 "y" (update p2 "x" (int 50)))

In the case where one wishes to update a static field via the class rather than

the object, for example in the situation where there are no instances of the class, we

include the following form:

(supdate <target> <field> <exp>)

In this case <target> should evaluate to a string that names the desired class. The
evaluation then proceeds in a similar fashion to the non static case. For example, to
enable debugging of the entry point to the Graphics 2D actor, one could execute:

(supdate "g2d.Main" "DEBUG" (boolean true))

2.9.4 Method Invocation

Static and non static methods of an object may be invoked using the following form:

(invoke <target> <method> <exp_1> ... <exp_N>)

where N ≥ 0. The arguments are evaluated from left to right, and then the interpreter

attempts to find a method, whose name is the value of <method> (which should be

a String), with the appropriate arguments. If no method is found an exception is

thrown. This resolution process is described in more detail in section 6.
Thus for example we could configure and display our frame via the following

sequence of invocations

(invoke frame "setSize" (int 50) (int 50))

(invoke frame "setLocation" (int 10) (int 10))

(invoke frame "setVisible" (boolean true))

which would cause the frame to be a square of fifty pixels positioned in the top left

hand corner of the screen.

In the case where one wishes to invoke a static method via the class rather than

the object we include the following form:

(sinvoke <target> <method> <exp_1> ... <exp_N>)

where N ≥ 0. In this case <target> should evaluate to a string that names the desired

class. The evaluation then proceeds in a similar fashion to the non static case.
So for example if we wished to configure and position our frame, so that it was

half the size of our screen, and centered therein, we could do the following sequence
of instructions.
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(define toolkit (sinvoke "java.awt.Toolkit" "getDefaultToolkit"))

(define dim (invoke toolkit "getScreenSize"))

(define h (lookup dim "height"))

(define w (lookup dim "width"))

(invoke frame "setSize" (/ w (int 2)) (/ h (int 2)))

(invoke frame "setLocation" (/ w (int 4)) (/ h (int 4)))

(invoke frame "setVisible" (boolean true))

To give another example, the class object corresponding to java.lang.Math

can be obtained, and named, via the expression

(define math (sinvoke "java.lang.Class" "forName" "java.lang.Math"))

But it would be a mistake to try and access static fields of the java.lang.Math
class, say PI, by then doing

(lookup math "PI")

because this will actually end up looking for a field called "PI" in the class that math
is an instance of, i.e. java.lang.Class. To access static fields via the class use:

java.lang.Math.PI

2.10 Control Forms

The usual Scheme/Lisp forms are provided.

2.10.1 Lexical Binding

Lexical binding is available via:

(let (

(<var_1> <bexp_1>)

(<var_2> <bexp_2>)

...

(<var_N> <bexp_N>)

)

<exp_1>

...

<exp_M>

)

where N, M ≥ 1. This expression incrementally augments the current lexical envi-
ronment. I.e. the binding of <var_1> to the value of <bexp_1> is visible in the
evaluation of <bexp_2>, and all subsequent expressions. Once all the bindings have
been evaluated, the expressions <exp_i> are evaluated in order (in the fully aug-
mented environment). The value of the entire expression is the value of <exp_M>.
So for example if one were nostalgic for the initial UNIX process file descriptor table,
one could construct the following array:
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(let ((0 java.lang.System.in)

(1 java.lang.System.out)

(2 java.lang.System.err))

(array java.lang.Object 0 1 2))

2.10.2 Sequencing

Sequencing is available via the form:

(seq <exp_1> ... <exp_N>)

where N ≥ 0. The value returned from a sequencing expression is the value returned

by the last expression in the sequence, or null in the case that N = 0.
Thus a simple use of these last two forms would be to construct our centered frame,

without littering the global environment with debris.

(let ((frame (object ("java.awt.Frame" "A Frame")))

(toolkit (sinvoke "java.awt.Toolkit" "getDefaultToolkit"))

(dim (invoke toolkit "getScreenSize"))

(h (lookup dim "height"))

(w (lookup dim "width")))

(invoke frame "setSize" (/ w (int 2)) (/ h (int 2)))

(invoke frame "setLocation" (/ w (int 4)) (/ h (int 4)))

(invoke frame "setVisible" (boolean true))

frame

)

2.10.3 Lambda Expressions and Closures

Closures are obtained by evaluating the corresponding lambda form:

(lambda (<param_1> ... <param_N>) <exp_1> ... <exp_M> )

where N ≥ 0 and M ≥ 1. The value of such an expression is a closure, a pair consist-
ing of the lambda expression, and the lexical environment at the time of evaluation.
Thunks (the case when N is zero) are permissible. As an example of this we could
define and name a centered frame factory as follows.

(define frameFactory

(lambda (frameName)

(let ((frame (object ("java.awt.Frame" frameName)))

(toolkit (sinvoke "java.awt.Toolkit" "getDefaultToolkit"))

(dim (invoke toolkit "getScreenSize"))

(h (lookup dim "height"))

(w (lookup dim "width")))

(invoke frame "setSize" (/ w (int 2)) (/ h (int 2)))

(invoke frame "setLocation" (/ w (int 4)) (/ h (int 4)))
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(invoke frame "setVisible" (boolean true))

frame)

)

)

2.10.4 Closure Application

Application of a closure to the appropriate number of arguments is via the apply form:

(apply <exp> <exp_1> ... <exp_N>)

where N ≥ 0. To litter our screen with annnoying popups we could then do

(apply frameFactory "Viagra popup")

(apply frameFactory "Nigerian bank scam")

(apply frameFactory "Lottery notification")

(apply frameFactory "Random porn site here!")

and save other people the time and effort.

2.10.5 Iteration

An iteration form is included based on the Scheme do form [10].

(do (

(<var_1> <init_1> <step_1>)

...

(<var_N> <init_N> <step_N>)

)

(<test> <exp> ...)

<command> ...)

where N ≥ 1, Evaluation of a do form proceeds in two steps, an initialization phase

followed by an iteration phase. In the initialization phase the <init_i> expressions

are evaluated sequentially in the outer environment. Their values are then bound to the

variables <init_i> to form the do environment, and the iteration phase commences.

In each iteration the following takes place. The <test> expression is evaluated, if

it does not evaluate to a boolean an exception is thrown. If it evaluates to true,

then the <exp> ... are evaluated in order, and the value of the last expression is

the value of the entire do form. Otherwise each of the <command> ... expressions

are evaluated for their effect, then the variables in the do environment are updated,

sequentially, to be the values of the <step_i> forms, and the next iteration com-

mences.
So a simple example is

16



(do (

(i (int 0) (+ i (int 1)))

(str " " (concat str " " i))

)

((= i (int 10)) str)

(invoke java.lang.System.err "println" str)

)

)

prints out a triangle of numbers:

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

In Java 1.5 a for-each construct was introduced, which enables the programmer to

conveniently iterate over a collection or array. JLambda supports this construct via

the for form:

(for <var> <rexp> <exp_0> ... <exp_N>)

Here, the range expression <rexp> should evaluate to either an integer, a string,
an array object or an instance of either of the following classes or interfaces.

java.util.Collection

java.util.Iterator

java.io.File

g2d.jlambda.Range

otherwise an exception is raised. The last three alter-
natives were added in
3428 in July 2019.The sequence of expressions <exp_0> ... <exp_N> are then evaluated once

for each element of the array/collection/iterator, in an environment in which <var> is

bound to the current element. In the case of a File object the elements being iterated

over are the lines in the file, not including the line separator. The value of the entire

for form is the value returned by the final evaluation of <exp_N>.

A g2d.jlambda.Range object has three final integer fields: begin, end,

and stride. When iterating over such an object, the first element is begin, and then

evey subsequent increment of stride, ending before end.

So for example
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(for c (object ("g2d.jlambda.Range" (int 0) (int 10) (int 2)))

(invoke java.lang.System.out "println" c))

prints out

0

2

4

6

8

In the case of the integer n, or string evaluation behaves as if the <exp> argument

was the collection whose elements are 0 . . . n− 1, in the case of an integer or as a char

array in the case of a string. The treatment if inte-
gers as set theoretic or-
dinals (i.e the set of or-
dinals less than them)

was introduced in ver-
sion 2180, as a simpler
version of the mystical
do construct. In version
2184 we tweaked the
parsing so that body

could be an implicit se-
quence of expressions.
Strings became iterable

in February of 2018, be-
cause Ian likes (non-
whitespace aspects of)
Python.

In this simple example,

(for x

(array int (int 3) (int 5) (int 7))

(invoke java.lang.System.err "println" x))

prints the list of numbers:

3

5

7

whereas

(for x (int 8)

(if (and (> x (int 2)) (!= (% x (int 2)) (int 0)))

(invoke java.lang.System.err "println" x)

)

)

does much the same thing.
The reduce and its generalization nreduce were introduced in January 2018.

The reduce form:

(reduce <exp0> <funexp> <exp1>)

evaluates each argument from left to right. The first argument <exp0> should evalu-

ate to an iterable object in the sense of for (that is either an Collection, array, or

integer). The second argument should evaluate to a closure of arity 2. The third argu-

ment is called the accumulator. If the iterable object is empty the form returns the

accumulator. Otherwise it proceeds by apply the closure to the next element in the

iteration and the accumulator. The value returned by the closure becomes the value

of the accumulator in the next step of the computation. When all the elements of

the first argument have been iterated over, the accumulator is returned.
A simple example is a function that given an integer n makes an array of length n

whose ith entry is i.
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(define makeArray (n)

(let ((arr (mkarray int n))

(fun (lambda (elem accum) (aset accum elem elem) accum )))

(reduce n fun arr)))

The nreduce form:

(nreduce <exp0> ... <expN-1> <funexp> <accum>)

is analagous, except that it takes N iterable arguments, and the closure must then be
of arity N + 1. Computation proceeds until one of the iterable objects is exhausted,
when the current value of the accumulator is returned. A simple example is

(define squarer (elem0 elem1 accum)

(let ((s (* elem0 elem0))) (aset accum elem1 s) accum))

(let ((accum (mkarray int (int 10))))

(nreduce (apply makeArray (int 10)) (int 10) squarer accum)

which makes an array of length 10, whose ith entry is i*i.

2.10.6 Branching

Both binary and ternary forms of the branching primitive are allowed:

(if <test> <then>)

(if <test> <then> <else>)

In both the binary and ternary forms the <test> should return a boolean, The

binary form returns null if <test> is false.

2.10.7 Boolean Operations

The related propositional forms are as usual:

(and <exp> .... <exp>)

(or <exp> .... <exp>)

(not <exp>)

The expressions are evaluated from left to right, their values should be boolean,

otherwise an exception is thrown. In the case of and, evaluation is terminated on

the first false value, while in the case of or, evaluation is terminated upon the first

true value encountered.
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2.10.8 Testing for Nullness and Objectness

As a convenience we provide a simple test to determine if an value is null:

(isnull <exp>)

which returns true iff the the expression exp evalutes to null. Similarly we provide

a simple test to determine if an value is neither null nor primitive data:

(isobject <exp>)

which returns true iff the expression exp evalutes to a value that is an instance of

a subclass of java.lang.Object. In other words is neither null nor primitive

data. These two operations
are new in version 1407.

2.10.9 Quoting

Finally evaluation can be prevented via the usual quote form:

(quote <exp>)

which returns the unevaluated <exp> as data, either a String or a List. Pretty sure no-one has
ever used quoted data,
so I may eliminate this
for anything other than
strings.

2.11 Subtyping

There is a version of Java’s instanceof operator. The expression:

(instanceof <exp> <exp>)

returns Java’s idea of whether or not the value of the first <exp> is an instance of
the class named by the (String) value of the second <exp>. For example, the
expression

(instanceof "java.lang.String" "java.lang.String")

will evaluate to true. Note that there is a clear distinction made between primitive
data and the associated wrapped form, an expression such as

(instanceof (int 7) "java.lang.Integer")

will evaluate to false.
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2.12 File loading and single line comments

One can load a file using the load form:

(load <exp>)

The expression <exp> should evaluate to a string naming the file. If this file is a jar

file (i.e. ends with .jar), then the jar file is loaded. Otherwise the file is assumed to

contain jlambda expressions, and the contents of the file, is parsed and then evaluated.

In the file loaded comments may appear. The JLambda language originally only

had single line comments. The comment character is the semicolon ;, with the proviso

that it is preceeded by whitespace, or begins a new line. With the introduction of Antlr4

parsing, we have added both C and C++ style comments.

; this is a single line comment

//this is also a single line comment

/* this

on the other

hand, can go on

for as long as it wants, but just like in C++

CANNOT be nested

*/

The ability to load a jar file was added in version 2295. This feature is experi-

mental, and is not designed to replace the common use of the JLAMBDA_CLASSES

environment variable.

2.13 Class Names, Inner Classes, and Enums

All of Java’s classes may be accessed by their full names. There is no import mecha-
nism, other than that provided by the lexical and dynamic binding primitives:

(define Vector "java.util.Vector")

(let ((Line "java.awt.geom.Line2D$Double")

(victor (object (Line (int 0) (int 0) length (int 0))))

(object (Vector victor)))

Note that, following Java’s reflection conventions, inner classes are accessed via
the $ rather than the .. So for example the elements of NodeType enum in g2d.graph.IOPNode
would be accessed by

g2d.graph.IOPNode$NodeType.RULE

21



2.14 Exceptions

One can throw an exception using the throw form:

(throw <exp>)

The expression <exp> should evaluate to an instance of java.lang.Throwable,

otherwise a somewhat different exception will be thrown. There is also a try catch

form for handling any exceptions that may be generated. It is closely related to the Java

form, without the option of multiple catches, or a finally clause.

(try <exp_1>

...

<exp_N>

(catch <var> <cexp_1> ... <cexp_M>))

where N ≥ 1. Evaluation of this form proceeds by first evaluating the <exp_i> in
order, if this succeeds without generating an exception, then the value of the entire
expression is the value returned by <exp_N. However, if evaluation of one of the
<exp_i> generates an exception, then this exception is bound to the variable <var>,
and <cexp_1> through <cexp_M> are evaluated in this larger environment, and the
value of the last <cexp_M> is the value of the entire try catch expression. For
example,

(try (throw (object ("java.lang.Throwable")))

(catch var (boolean true)))

(try (boolean false)

(catch var (boolean true)))

the first expression evaluates to the boolean true, while the second evaluates to the

boolean false.

Since version 2022 we have included the class g2d.jlambda.Result to make

it easy to throw an arbitrary piece of data up to and enclosing try. One simple use is

to return early from a for loop.

(let ((digits (array int (int 0) (int 2) (int 3) ... (int 10000)))

(pi java.lang.Math.PI)

(ball (sinvoke "g2d.jlambda.Result" "create" pi))

(result

(try

(for i digits (if (= i (int 7)) (throw ball)))

(int -1)

(catch result

(seq

(if (instanceof result "g2d.jlambda.Result")

(lookup result "value")

(int -2)))))))

result)

22



The class g2d.jlambda.Result subclasses java.lang.Throwable, and

has a static factory method create for each basic data type, as well as the java.lang.Object

class. The value used to create the g2d.jlambda.Result object can be obtained

by looking at the object’s value field.

2.15 Tuples

Tuples are experimental. Tuples are, mixed type, fixed length sequences. They are

instances of the g2d.jlambda.Tuple class bestowed with some special features

endowed by the interpreter. One can store both objects and primitive data in a tuple.

Apart from calling the tuple constructors directly, a tuple can be created in one of three

ways:

(tuple <exp0> ... <expN - 1>)

(mktuple <integer>)

(mktuple <java.util.Collection>)

The first creates a tuple of length N with the given arguments as its members. The

second creates an empty tuple of the desired length, while the third form creates a tuple

that has the same members as the collection. The class g2d.jlambda.Tuple sub-

classes java.util.AbstractCollection with none of the optional methods

implemented. One can recognize a tuple by the primitive

(istuple <obj>)

which is the same as asking

(instanceof <obj> "g2d.jlambda.Tuple")

Because tuples are collections, one can iterate over a them using any of the forms

for, reduce, and nreduce. You can also determine a tuples length by using the

size method, but a quicker way is to reference its final field:

(lookup <tuple> "length")

To access an element of a tuple use:

(nth <tuple> <integer>)

To update a tuple use:

(setnth <tuple> <integer> <value>)

Tuples were inspired by Seus’ carts and python tuples. Their main use was envis-

aged to be as accumulators for the reduce and —nreduce forms, and perhaps as

an easy way of returning multiple values from a function. The urge to pass them to

Java methods should be resisted, since Java is blind to their mixed type nature, and so

the two disparate views of the world may be unhappy.
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3 The Glyphish Hierarchy

A description of the JLambda language would not be complete without touching

on the Glyphish hierarchy mentioned in section 1, and in particular it’s use of the

JLambda language. This class hierarchy belongs to the g2d.glyph package, whose

class structure is shown below:

Identifiable

Attributable

Glyphish

Glyph GlyphList ClosureGlyph

Javadoc documentation for these and other classes can be found at [11].

3.1 The Identifiable Class

Graphical objects that are manipulated by other actors (for example formal reasoning

tools such as Maude and PVS) may be assigned unique identifiers by them. Unique

identifiers are strings. To access an object by it’s unique identifier the fetch form is

used:

(fetch <exp>)

attempts to fetch the object whose unique identifier is the value of the expression

<exp>.

An object, belonging to a class extending Identifiable, may be assigned a

unique identifier using the setUID method. It is an error, i.e. an exception will be

thrown, to assign the same identifier to two objects, and it is also an error to assign

an identifier to an object that has already been assigned an identifier. Similarly one

accesses an particular object’s unique identifier by the getUIDmethod. If the instance

of the Identifiable class has not been assigned a unique identifier the getUID

method returns null. Finally one can unassign a name to an Identifiable object

by using the unsetUID method.

(invoke <exp> "setUID" <exp>)

(invoke <exp> "getUID")

(invoke <exp> "unsetUID")

In November 2013 we added the specialized JLambda forms that offer a more

general feature. Unique identifiers can be manipulated directly by the dedicated forms:

(setuid <exp> <exp>)

(getuid <exp>)
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The first form enables one to assign to the value of the first argument the value

of the second argument as it’s uid. It is slightly more general in that the first object

need not be an instance of the Identifiable class. Any non-null Java value

can be assigned a uid, though the uid must still be a string. To unassign a uid to an

object, once simply assigns null as its new uid. To get the uid of an object, obj, one

can simply use the expression (getuid obj). So after (setuid foo "bar"),

for some object foo, we would have that (getuid foo) returned "bar", and

(fetch (getuid foo)) was just foo.

3.2 The Attributable Class

An object belonging to a class extending Attributablemay have new fields added

dynamically, in the form of attributes. An attribute has a name and a value. For

efficiency attributes are manipulated via the dedicated forms:

(setAttr <exp> <exp> <exp>)

(getAttr <exp> <exp> [<default>])

rather than by the corresponding methods of the object involved. The getAttr

form has an optional default argument. This is the value returned, in the case where

the object has no attribute by the specified name. If no default is specified, and no

attribute is found, then null is returned. In both forms the first expression evaluates

to the target instance, the second evaluates to the name of the attribute (which should

be a string), while in the setAttr form the third evaluates to the new desired value,

while in the getAttrform the optional third expression evaluates to the default value

to be returned, in the case where the object has no attribute by that name.

Attribute values are arbitrary objects, including closures. An attribute with a clo-

sure value corresponds to a dynamic method. Two ways to make use of such a dy-

namic method is with an apply expression, or by invoking one of the Closure’s

many applyClosure convenience methods directly on the attribute.

(setAttr att "method" (lambda (x) ...))

...

(apply (getAttr att "method") (int 7))

...

(invoke (getAttr att "method") "applyClosure" (object null))

In section 4 we present in detail an example that, amongst other things, uses at-

tributes to implement mouse draggable graphical objects.

3.3 Glyphs

In Joel Bartlett’s Ezd package a Glyph was something that knew how to draw itself,

typically as a sequence of shapes, and was capable of accepting and responding to user
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inputs. The Ezd package was developed using the early Java 1.0 event model, and

relied on the java.awt package as it was then, in Java 1.0.

We adopt a similar, though distinct, conceptual approach. Our approach has been

strongly influenced by the newer Java event model, and the clean two dimensional

graphics supplied by the Java 2D API. In particular we make heavy use of theAffineTransform

class of the geom subpackage of java.awt, and the newer 2D implementations of

the Shape interface, also of the java.awt package. We have also taken advantage

of the Closure class provided by the JLambda language.

In our approach the root class of all things glyph-like is the abstract class

Glyphish. There are three related but distinct aspects to the Glyphish class:

1. How a Glyphish instance depicts or portrays itself graphically, typically this

is done at the request of an encompassing Component.

2. How a Glyphish instance handles input events from the keyboard and mouse,

again typically delegated by an encompassing Component.

3. How a Glyphish instance positions or transforms itself within it’s encompass-

ing Component.

The abstract Glyphish class has three main immediate concrete subclasses:

• the Glyph class,

• the GlyphList class, and

• the ClosureGlyph class.

The Glyph class is the simplest of the direct subclasses of Glyphish. A Glyph

instance has a single java.awt.Shape, border colour, fill colour, and stroke width.

A GlyphList is a composite, it consists of an ordered list of Glyphish things. A

ClosureGlyph is the most dynamic, it requires JLambda closures to implement

all the abstract methods required by the Glyphish API. It provides, in essence,

a way of defining, at runtime, Glyphish instances whose methods are defined at

runtime, rather than compile time.

3.3.1 Depiction

A concrete Glyphish instance portrays itself by implementing the abstract method

void paint(java.awt.Graphics2D g2d);

declared in the Glyphish class. In the case of a Glyph instance it will draw itself
according to its java.awt.Shape field, fill colour, border colour and stroke. In the
case of a GlyphList it merely delegates, in order, to all of the Glyphish elements
in its list. The ClosureGlyph responds by applying it’s private

Closure paintClosure;

field to the appropriate Graphics2D object of the java.awt package.
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3.3.2 Events

Glyphish instances are capable of handling any input events, i.e. instances of the
InputEvent class of the java.awt.event package. To determine whether a
Glyphish instance is the desired target of an Input event the abstract method

boolean inside(Point2D p);

of the Glyphish class is used, here the class Point2D belongs to thejava.awt.geom
package. The Glyph class implements this by using it’s java.awt.Shape’s field
corresponding

boolean contains(Point2D p);

method. The GlyphList instance implements this by iterating through it’s list of
Glyphish elements calling each element’s inside method, and returns true if
one returns true, else it returns false. The ClosureGlyph responds by applying
it’s private

Closure insideClosure;

field to the appropriate Point2D object.
The Glyphish class implements each of the Input event listener interfaces:

MouseListener,MouseMotionListener, and KeyListener, all of the pack-
age java.awt.event. They do so in a uniform way. For each method in the lis-
tener interface a Glyphish instance has a Closure object associated with it. For
example in the case of the

void mouseClicked(MouseEvent e);

method of the MouseListener class, the Glyphish class has the private field

Closure mouseClickedAction;

This closure will have arity 2, and uses Luca Cardelli’s trick of having a self argu-
ment to implement Java’s this pointer. Calling the

mouseClicked(MouseEvent e)

method would result in the clickedAction closure being applied:

clickedAction.applyClosure(this, e);

where the this pointer is of the Glyphish instance that is responding to theMouseEvent

instance e.
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3.3.3 Transformation

Positioning, moving, and animating Glyphish instances is done by applying affine

transformations (e.g. translating, rotating, shearing, and scaling) to them.
A concrete instance of the Glyphish class transforms itself by providing an im-

plementation to the abstract method

void transform(AffineTransform a);

of the Glyphish class. In the case of a Glyph instance, the AffineTransform
a is applied to the instance’s Shape. In the case of the GlyphList instance, it is
applied to each Glyphish element of its list. While the ClosureGlyph simply
applies it’s private

Closure transformClosure;

to the AffineTransform object a.

3.4 Closures

Another use of the Closure class provided by the JLambda language is in creating

event handlers. For each Java listener class, we provide a corresponding template class

that implements the desired listener interface, and extends the Attributable class.

An instance of the template class can be specified by providing Closures for each of

the required methods. As mentioned above, we have adopted the convention that these

closures take two arguments, the self parameter, followed by the event parameter.
A simple example of this, corresponding to Java’s ActionListener interface

of the java.awt.event package, is the ClosureActionListener class of the
g2d.closure package. The action listener interface requires the solitary

void actionPerformed(ActionEvent e)

to be implemented. Consequently the ClosureActionListener class has a pri-
vate field

Closure actionPerformedClosure;

a setter for this field:

public void setActionClosure(Closure closure){

if(closure.getArity() == 2) {

actionPerformedClosure = closure;

} else { // report an error }

}

The required actionPerformed method is then simply implemented by:

public void actionPerformed(ActionEvent e){

if(actionPerformedClosure != null) {

actionPerformedClosure.applyClosure(this, e);

}

}
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4 A Complete JLambda Program

In this section we present a complete example of a JLambda program. The program,

clicker, contains the most interesting features of JLambda, namely, the creation

and manipulation of Java objects, and the use of closures [12] as event handlers.

The clicker program, a full listing of which can be found at [13], constructs

graphical objects using the g2d class hierarchy [11]. When the clicker program

is run, it displays a window containing a single circular node. Clicking anywhere in

the window creates a new node at that point. The following is a screenshot of the

clicker program window showing a single node.

The user can change the colour of an existing node by shift-clicking on it; a di-

alogue box will appear, allowing the user to select a new colour for the node. The

following is a screenshot of the clicker program window showing several nodes,

some of which have had their colour changed by the user.
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Finally, existing nodes can be dragged using the mouse.

In Section 4.1 we present an overview of the lexical structure of the clicker program

code, in an attempt to orient the subsequent discussion. Section 4.2 contains details

each section of theclicker program code, along with an explanation of its operation.

4.1 The clicker’s Lexical Structure

To aid navigation of the clicker source code, we provide the following representa-

tion of its lexical structure.

(let ((h ...)

(w ...)

(black ...)

(yellow ...)

(stroke ...)

(ellipse ...)

(view ...)

(frame ...)

(mkNode

(lambda (...)

(let ((node ...)

(pressed ...)

(released ...)

(dragged ...)

(clicked ...)

30



(trans ...))

(seq ... (invoke ...) ...))))

(clickedV ...))

(seq ...))

4.2 Code Listing for clicker

The clicker program begins by creating the main window object; it defines bindings

for some Java primitive types, fields, and objects, which are used to specify the initial

properties of the node object, and the g2d.swing.IOPFrame object, which is the

program’s main window.

(let ((h (int 50))

(w (int 70))

(black java.awt.Color.black)

(yellow java.awt.Color.yellow)

(stroke (object ("java.awt.BasicStroke" (float 2.5))))

(ellipse (object ("java.awt.geom.Ellipse2D$Double"

(int 0) (int 0) w h)))

(view (object ("g2d.swing.IOPView"

(boolean true) (boolean true))))

(frame (object ("g2d.swing.IOPFrame" "Node Example" view)))

Note that the use of these bindings relies on a particular semantics of JLambda’s

let expression: that each binding incrementally augments the lexical environment.

The next code section defines a closure which, when invoked, constructs a node

object.

(mkNode

(lambda (xPos yPos)

(let ((node (let ((temp (object ("g2d.glyph.Glyph"

ellipse black yellow))))

(seq (invoke temp "setStroke" stroke)

temp)))

In creating the node, the closure uses several bindings from the previous section to

specify initial properties, such as colour, of the node.

The mkNode closure also creates several closures for each of the mouse click

events to which the node responds, and binds them to the variables pressed, released,

dragged, and clicked. Later in the program, these closures will be registered as

event handlers for the newly-created node.

The next section of the program contains the definition of each of these closures:

(pressed (lambda (self event)

(seq
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(setAttr self

"pointF"

(object ("java.awt.geom.Point2D$Double"

(invoke event "getX")

(invoke event "getY"))))

(setAttr self "draggedF" (boolean true)))))

(released (lambda (self event)

(setAttr self "draggedF" (boolean false))))

(dragged

(lambda (self event)

(let ((dragon (getAttr self "draggedF")))

(if (and (!= dragon (object null)) dragon)

(let ((pnt (getAttr self "pointF"))

(eX (invoke event "getX"))

(eY (invoke event "getY"))

(a (let ((temp (object ("java.awt.geom.AffineTransform"))))

(seq (invoke temp

"translate"

(- eX (invoke pnt "getX"))

(- eY (invoke pnt "getY")))

temp))))

(seq (invoke self "transform" a)

(invoke pnt "setLocation" eX eY)

(invoke view "repaint")))))))

(clicked (lambda (self event)

(if (invoke event "isShiftDown")

(let ((chooser (object

("javax.swing.JColorChooser")))

(color (invoke chooser

"showDialog"

frame

"Color Chooser"

(invoke self "getFill"))))

(seq (if (!= color (object null))

(invoke self "setFill" color))

(invoke view "repaint"))))))

When an event handler closure is invoked it receives two arguments: the object

receiving the event, and the event object itself. The closure uses information stored in

the event object to manipulate the receiving object.

Each of the above closures manipulate the node object in ways that correspond

to the type of event the node object received. For example, the clicked closure
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checks whether the shift key is depressed; if the key is depressed, the closure displays

a dialogue box, and changes the colour of the node to the selected colour.

Next, a java.awt.geom.AffineTransform object is defined, which will

later be used to provide translation of the node object in response to a mouse drag

event.

(trans (let ((temp (object ("java.awt.geom.AffineTransform"))))

(seq (invoke temp "translate" xPos yPos)

temp))))

The event handling closures that have been created and bound to variables must

now be registered as event handlers for the node object. The following code sequence

invokes the setMouseAction method of the node object to register closures for

each of the different types of mouse event to which the node responds.

(seq

(invoke node

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_PRESSED

pressed)

(invoke node

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_RELEASED

released)

(invoke node

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_CLICKED

clicked)

(invoke node

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_DRAGGED

dragged)

(invoke view "add" node trans)))))

The final invoke expression in the preceding code sequence simply adds the

translated node to the view object.

The program now defines a closure that creates a new node in response to a mouse

click event.

(clickedV (lambda (self event)

(if (not (invoke event "isShiftDown"))

(seq

(apply mkNode

(- (invoke event "getX")

(/ w (int 2)))
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(- (invoke event "getY")

(/ h (int 2))))

(invoke view "repaint"))))))

The clickedV closure receives the window object and event object as arguments,

and uses the event object to determine the position at which to create the new node.

clickedV creates a new node object by calling the mkNode closure defined previ-

ously.

Since a mouse click event creates a new node, it must be received by the window

object, and not a node object. Consequently, the closure that handles mouse click

events is not created within the body of mkNode, unlike the previously defined event

handler closures.

The remaining section of code simply registers the node-creation event handler,

clickedV, with the window object, and displays an initial node.

(seq

(invoke view

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_CLICKED

clickedV)

(apply mkNode (* w (int 3)) (* h (int 3)))

(invoke view "repaint")))

After the program has been evaluated the interpreter exits, and Java’s AWT thread

continues running to listen for window events. Closures that are invoked in response

to events are interpreted in this second thread.

The code listing for the clicker program demonstrates the power and simplicity

of the interface provided the JLambda language to Java’s language facilities. Fea-

tures such as closures and lexical scoping make construction of event-driven graphical

programs, such as clicker, particularly straight-forward.

5 Related Work & Related Issues

In this section we describe briefly several projects related to JLambda. Additionally,

we present an overview of the implementation of the JLambda interpreter.

5.1 Projects Related to JLambda

There exist several Scheme interpreters that use Java as their implementation lan-

guage. Four well-known examples are SISC [14], Kawa [15], and JScheme [16], and

Skij [17]. Although all of these projects aim to produce a Java-based implementation

of the Scheme language, they each have unique characteristics. We present here a brief
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description of each project and its interface to the Java language. This is not an ex-

haustive list by any means, there are close to two hundred languages (200) cited in [18]

that use Java or the Java Virtual Machine as a basis, roughly twenty (20) of these are

classed as Scheme or Lisp like.

5.1.1 SISC

SISC is a Scheme interpreter implemented in Java whose primary goal is rapid ex-

ecution of the complete Revised5 Report on the Algorithmic Language Scheme [10]

definition. In particular, SISC supports proper tail recursion and unrestricted first-class

continuations. SISC’s foremost concern is performance, and it outperforms all existing

Java-based Scheme interpreters, often by more than an order of magnitude.

The interface to the Java language provided by SISC is the S2J module. Importing

this module allows one to instantiate Java classes, call methods on Java objects, and

access/modify fields of Java objects.

Java classes are types in SISC’s extensible type system; the procedure

(java-class symbol)

returns the Java class of name symbol. Java classes can be instantiated with a call to

the java-new procedure:

(java-new class args ...)

which selects a constructor of class based on the types of args and calls it, return-

ing the newly created object.

Java fields are made accessible to Scheme code as procedures that can get/set any

field of a given name on any Java object. Static Java fields can be accessed/modified

by passing an instance of the appropriate class as the first argument to the procedures.

The procedures

(generic-java-field-accessor symbol)

(generic-java-field-modifier symbol)

return a procedure that when invoked with a Java object as the first argument, retrieves

or sets the value of the Java field named symbol in the Java object.

Methods are made accessible to Scheme code as procedures that can invoke any

method of a given name on any Java object. For example, the procedure

(generic-java-method symbol)

returns a procedure that when invoked with a Java object as the first argument and Java

values as the remaining arguments, invokes the best matching method named symbol

on the Java object, and returns the result. Static Java methods can be invoked by

passing an instance of the appropriate class as the first argument to the procedure.
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5.1.2 Kawa

The goal of Kawa is a Scheme environment implemented in Java that compiles Scheme

code into the byte-code instructions of the Java Virtual Machine. All of the required

and optional features of the R5RS Scheme standard are supported, with the exception

of proper tail recursion and unrestricted continuations. Kawa also provides mecha-

nisms for the definition, creation, and access of Java objects.

In Kawa, objects are created with the procedure

(make type arg ...)

which constructs a new object instance of the specified type, which should be of the

form <java.lang.Class>.

For accessing the fields of Java objects and static fields, Kawa provides two proce-

dures, field and static-field, which return the value of the field. Note that the

field must be declared public.

(field object fieldname)

(static-field class fieldname)

Fields may be set by using the field and static-field procedures as the first

operand to set!. Here is an example:

(set! (field a ’car) (field b ’car))

Java instance methods and static methods may be invoked with the invoke and

invoke-static procedures:

(invoke object name arg ...)

(invoke-static class name arg ...)

5.1.3 JScheme

The JScheme project is a dialect of Scheme whose chief feature is a simple and com-

prehensive interface to Java. JScheme supports all features of the R4RS standard ex-

cept unrestricted first-class continuations and mutable strings. The interface to the Java

language provided by JScheme is called the Javadot notation, which enables access by

name to all methods, constructors, and fields of any Java class. Table 1 provides some

examples of this notation.
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Syntax Type of Member Example

“.” at end constructor (Font. NAME STYLE SIZE)

“.” at beginning instance method (.setFont COMP FONT)

“.” at beginning, $ at end instance field (.first$ ’(1 2))

“.class” suffix Java class Font.class

“.” only in the middle static method (Math.round 123.458)

“$” at end static field Font.BOLD$

Table 1: Examples of JScheme’s Javadot notation

5.1.4 Skij

Skij, developed at IBM Watson Labs by Michael Travers, is a Scheme interpreter im-

plemented in Java designed for exploratory programming in the Java environment.

The project has now been retired by IBM, and consequently is no longer available. We

mention it here because its purpose is similar to that of JLambda, and several of its

ideas are closely related to ideas present in JLambda.

In Skij, Java objects are created and manipulated using the primitive procedures

new, invoke, peek, poke, invoke-static,peek-static, and poke-static.

Class arguments must be either the fully qualified class name as a string or symbol,

or a java.lang.Class object. Method and field names should be either strings or

symbols.

An object is created with the new procedure:

(new class args ...)

Instance fields and static fields are accessed with the peek and peek-static

procedures:

(peek object field-name)

(peek-static class field-name)

Instance fields and static fields are modified with the poke and poke-static

procedures:

(poke object field-name new-value)

(poke-static class field-name new-value)

Instance methods and static methods may be invoked with theinvoke and invoke-static

procedures:

(invoke object method-name args ...)

(invoke-static class method-name args ...)
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5.2 Overview of the JLambda Interpreter

We provide here a brief overview of the the implementation of the JLambda inter-

preter; further details of the interpreter’s design and implementation can be found in

David Porter’s Honours thesis [19].

The interpreter for the JLambda language is implemented in Java, and consists of

three components: a parser, a syntax analysis phase, and an evaluation phase. Choos-

ing Java as the interpreter’s implementation language leads to certain complications

in the interpreter’s design. In general, the simplest way to implement an interpreter

of a Scheme-like language is by using a simple recursive evaluation model in which

an expression is evaluated by recursively evaluating each subexpression. If such an

interpreter is implemented in Java it will exhibit recursive execution behaviour, since

it inherits the control structure of the underlying Java system. However, the lack of

proper tail recursion in Java means the interpreter overflows the JVM stack when at-

tempting to evaluate arbitrarily long recursions, such as the computation of long lists.

The goal then was to design the JLambda interpreter so that it uses an iterative

execution process; this was achieved by implementing the interpreter as a register-

machine interpreter. In this design, the procedure-calling and argument-passing mech-

anisms used in the evaluation process are implemented in terms of operations on reg-

isters. We thus obtained an explicit-control interpreter that exhibits iterative execution

behaviour.

Converting the interpreter design from a simple recursive evaluation model to a reg-

ister machine interpreter involved two steps. First, we ensured all recursive calls were

tail calls, by transforming the interpreter into continuation passing style [20]. If the

interpreter implementation language was properly tail recursive, this transformation

would have been sufficient to achieve an interpreter with iterative execution behaviour,

since properly tail recursive languages guarantee that tail recursion is equivalent to it-

eration. However, since we chose Java as the implementation language—which is not

properly tail recursive—a further step was required, in which we manually transformed

tail recursion into iteration.

The second step consisted of the transformation of the interpreter from a continu-

ation passing style into a register-based imperative style. This transformation is based

on the following observation: if a set of methods call each other only by tail calls,

we can first rewrite the calls to use variable assignment instead of argument-passing,

and we can then replace method calls with jumps. The register machine transforma-

tion consists of systematically performing such rewrites. The result of performing

the continuation passing transformation and the register machine transformation was

an interpreter with iterative execution behaviour. This interpreter can therefore prop-

erly evaluate any JLambda expression. The transformation from recursive to iterative

interpreter is a standard technique in the programming language community. An ex-

ample worked out in detail can be found in Felleisen’s thesis [21].

The syntax analysis phase serves to improve the interpreter’s execution speed. In

this phase all lexical variables in a JLambda program are replaced by their corre-
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sponding lexical addresses in the program structure. Such a program representation

enables the evaluator to retrieve variable values directly from known addresses in the

run-time environment. Implementing variable lookup operations in this way is a con-

siderable improvement over lookup operations based on searching the environment.

Consequently, the addition to the interpreter of a syntax analysis phase yields a signif-

icant increase in its execution speed.

6 Method and Constructor Resolution

The Java Reflection API is both quirky, and low level. It provides objects that represent

meta-level concepts such as classes, interfaces, fields, methods, constructors, and class

member modifiers. It also allows for: the ability to access or update the value of an

objects field; to invoke an object’s method on a given set of values, or construct a new

object via calling a constructor on a given set of values. What it does not provide is

any means of resolving what method or constructor one should use, given a certain

sequence of arguments. Consequently, it is left to the JLambda interpreter to decide

on how this should be done. In Java, method and constructor resolution uses both

runtime, and static compile time information. The runtime type of the target object is

used, together with the compile time types of the arguments. In an interpreted language

we have no static type information to rely on, and consequently we must attempt to do

the best we can with the possibly incomplete information (due to the presence of the

null object reference, amongst other things) we have at hand. Namely, the runtime

types of the arguments.

Compared to other implementations of interpreted languages that use Java’s Re-

flection API, see section 5, we have adopted a rather conservative approach. This

is because our aim is to provide a simple faithful and precise interface to Java as

is possible in an untyped interpreted language. A rather bolder scheme is outlined

by Michael Travers in [22, 23] and used in his language Skij [17], as well as Peter

Norvig’s JScheme [16].

6.1 Constructor Resolution

Evaluation of a constructor call

(object (<exp> <exp_1> ... <exp_N>))

proceeds as follows. First the arguments are evaluated from left to right, the first

argument <exp> should evaluate to string representing the full name of a Java class.

If the so named Java class is not public an exception is thrown. It is, of course, the

runtime types of the values of the arguments <exp_1> ... <exp_N> that are used

to determine the appropriate constructor. If an argument’s value is null it’s type is

treated like a wild card object reference.

N.B. Only constructors that are declared public qualify in this search.
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The search proceeds as follows. First the interpreter looks for a constructor that
exactly matches the argument types (using the

public Constructor getConstructor(Class[] parameterTypes)

method of the java.lang.Class class). Otherwise we look among the public
constructors for the best match, the candidates are chosen from those returned by the

public Constructor[] getConstructors()

method of the java.lang.Class class, not, for example, the

public Constructor[] getDeclaredConstructors()

method of the java.lang.Class class). The notion of best is taken to mean the

least when taking widening, the interface hierarchy, and the class hierarchy into con-

sideration. There may be many such choices, and presently we simply choose one,

making no effort to resolve ambiguities. If no constructor is found an exception is

thrown.

6.2 Method Resolution

Evaluation of a static or non static method call following form:

(invoke <target> <method> <exp_1> ... <exp_N>)

proceeds as follows. The arguments are evaluated from left to right, and then the

interpreter attempts to find a method, whose name is the value of <method> (which

should be a String), with the appropriate arguments. It is the method of the class that

the runtime value of <target> belongs to, that is subsequently found and invoked.

If no matching method is found an exception is thrown. The search is almost

identical to the one undertaken in the object construction case. It is, of course, the

runtime types of the values of the arguments <exp_1> ... <exp_N> that are used to

determine the appropriate method. As in the constructor case, if an argument’s value

is null it’s type is treated like a wild card object reference.

N.B. Only methods that are declared public qualify in this search.
First the interpreter looks for a method that exactly matches the argument types

(using the

public Method getMethod(String name, Class[] parameterTypes)

method of thejava.lang.Class class). Otherwise we look among the public
methods for the best match, the candidates are chosen from those returned by the

public Method[] getMethods()

method of the java.lang.Class class, not, for example, the

40



public Method[] getDeclaredMethods()

method of the java.lang.Class class). The notion of best is elaborated slightly
from the constructor case to take into account the declared return types of the method.
This is only used when the parameter types match exactly, and in this case the more
specific return type is preferred. (See sections 8.2 and 8.4 of [9], and the API for the

public Method getMethod(String name, Class[] parameterTypes)

method of the java.lang.Class class). If no method is found an exception is

thrown.

The reader should be warned that there is a long standing unresolved bug in the

Java Reflection API [24] that has to do with access restrictions on inner class ob-

jects. Some methods, that should be accessible, are not. For example instances

of java.util.Iterator that are returned by java.util.Collection in-

stances are often unusable. We attempt to circumvent this problem by suppress-

ing the Java language access checking, using the setAccessible method of the

java.lang.reflect.AccessibleObjectclass, when situations like this arise.

6.3 Variations on this Theme

The main differences between the resolution process we have described here, and the

one suggested by Travers, apart from memoisation, is that we attempt to obey Java’s

access restrictions, and restrict our attention to public methods and constructors.

Travers on the other hand considers all possible methods, and uses the Java 1.2’s class

java.lang.reflect.AccessibleObject to suppress access checking. We,

on the other hand, only resort to this to circumvent Java’s Reflection API idiosyn-

crasies.

7 Debugging JLambda

There are at least three common ways of using the JLambda interpreter: using the

read-eval-print loop, calling the interpreter directly from Java, and sending IOP’s

graphics2D actor a message. In the section we look at the first two.

7.1 The JLambda Read-Evaluate-Print Loop

The JLambda interpreter, encapsualted in the class g2d.jlambda.ReadEvalPrintLoop,

is designed like the usual Lisp or Scheme style read, eval, then print loop. You can type

any valid jlambda expression to be evaluated, and it will print the result of evaluation.

It also understands a modicum of other queries: In 2544 we added
the ability to pretty
print a particular
definition, as well as
list in alphabetical
order, the names of
the definitions. One

can also toggle the
FULL DFNS switch in
ReadEvalPrintLoop

to pretty print all
definitions. The
printing of the De
Bruijn-ified bodies was
eliminated.

q to quit (or quit)

? to see these instructions
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d to see the current definitions

s <name> to see the definition of <name>

u to see the current uids

v to toggle the degree of verbosity in error reports

One can also launch the interpreter with an optional filename. This file should con-

tain a single JLambda form to be evaluated, prior to entering the read, eval, print loop.

The r-e-p loop, while portable, is distinctly primitive in flavour. It is very common

amongst jlambda sufferers to invoke it in conjuction with the tecla utility enhance,

see [25].

The abililty to tweak the verbosity of error reporting comes in handy when things

go awry, and is provided by the g2d.jlambda.Debugger class. For the purposes

of illustration there is a class in the util package g2d.util.Bugs:

package g2d.util;

public class Bugs {

public static final int ZERO = 0;

public static void loop(){

loop();

}

public static int divideByZero(int x){

return x / ZERO;

}

}

This class is designed to have methods that throw unchecked exceptions, which

from the point of view of the reflective interpreter simply result in failure:

> (sinvoke "g2d.util.Bugs" "loop")

Uncaught exception:

sinvoke: method invocation failed

Method = public static void g2d.util.Bugs.loop()

Target = g2d.util.Bugs

JLambda backtrace:

computing result of sinvoke form @ line number 1

>

As one can imagine this is not very helpful news when debugging, so to gain more

information in such a situation one can look at the internal Java exceptions that were

generated. One can either do this with the built in read-eval-print loop v command, or

programmatically by:
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> (sinvoke "g2d.jlambda.Debugger" "toggleVerbosity")

true

>

To prevent seeing too much detail, we will also limit the printing of stack traces of the

reported Java exceptions to a depth of 3 (the default is 15)

> (sinvoke "g2d.jlambda.Debugger" "setStackDepth" (int 3))

and then, by re-executing the problem form, we see the real cause of the problem:

> (sinvoke "g2d.util.Bugs" "loop")

Uncaught exception:

sinvoke: method invocation failed

Method = public static void g2d.util.Bugs.loop()

Target = g2d.util.Bugs

Cause[0]: (class g2d.jlambda.EvaluateError)

stack[0] = g2d.jlambda.InvokeCont.invokeMethod(InvokeCont.java:120)

stack[1] = g2d.jlambda.InvokeCont.computeResult(InvokeCont.java:78)

stack[2] = g2d.jlambda.EvalArgsCont.handleReturn(EvalArgsCont.java:

stack[3] = g2d.jlambda.Continuation.ret(Continuation.java:66)

.... 6 more (see g2d.jlambda.Debugger to increase depth)

Cause[1]: (class java.lang.reflect.InvocationTargetException)

stack[0] = sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

stack[1] = sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethod

stack[2] = sun.reflect.DelegatingMethodAccessorImpl.invoke(Delegati

stack[3] = java.lang.reflect.Method.invoke(Method.java:585)

.... 10 more (see g2d.jlambda.Debugger to increase depth)

Cause[2]: (class java.lang.StackOverflowError)

stack[0] = g2d.util.Bugs.loop(Bugs.java:7)

stack[1] = g2d.util.Bugs.loop(Bugs.java:7)

stack[2] = g2d.util.Bugs.loop(Bugs.java:7)

stack[3] = g2d.util.Bugs.loop(Bugs.java:7)

.... 1021 more (see g2d.jlambda.Debugger to increase depth)

JLambda backtrace:

computing result of sinvoke form @ line number 1

>
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The underlying cause of the failure is stack overflow caused by the unguarded recursive

call to loop.

7.2 Java Hooks into JLambda

The two most common entry points into the interpreter are provided the the classes:

g2d.jlambda.Evaluate and g2d.jlambda.Closure.

The most common and user friendly entry point to the interpreter is the static

method:

static Object evaluate(String desc)

which parses the given string as a JLambda expression, evaluates the result, and

returns the result. The second most common entry point deals with the situation when

one has a closure closure and one wants to apply it to an object obj, and of course

get the result. This is done with a helper method of the g2d.jlambda.Closure

class. Namely:

closure.applyClosure(obj);

There are a whole slew of applyClosure methods, varying on the arity of the clo-

sure, currently the upper bound is 4. Closures with more arguments than 4 tend to be

curried anyway.

8 Version History of JLambda

• Version 1407: Added the boolean expressions isnull and isobject

• Version 1412: Antrl4 now used to parse JLambda.

• Version 1424: Swingless antl4 version for android built.

• Version 1534: Added implicit seqs into the syntax of lets, lambdas, defines,

and trys.

• Version 2022: Added the class g2d.jlambda.Result as a way of throwing

an aribtrary object.

• Version 2178: Added the adhoc .class clause for static field references.

• Version 2180: Added the ability for for over a integer range.

• Version 2184: Added implicit seqs into the syntax of fors, and catches.

• Version 2.0.0 (git version)
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– Added the reduce and nreduce forms.

– Made java.lang.String iterable in the for, reduce and nreduce

forms.

– Added tuples.

– Added readable array types.
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