
JLambda: A Language for Interactive Visualization of Formal
Models

Linda Briesemeister∗, Ian A. Mason†, David Porter‡, Carolyn L. Talcott§

January 7, 2006

Abstract

Recent applications of SRI’s formal reasoning tools (including Maude, Sal and PVS) to bioinformatics and cryp-
tography have led to the development of a suite of visualization and interoperation tools. This paper concentrates on
the visualization tool JLambda, its associated specialized class libraries, and its current uses. Currently, JLambda’s
primary use is for descriptions of interactive visualizations of complex information, such as Petri nets, graphs, and
strand spaces, which are generated automatically by formal reasoning tools such as Maude. JLambda has also found
a niche in the software development process, as a means of rapidly testing software configurations, and as a ”scripting
duct tape” that glues test applications together.

Keywords: Formal methods, software engineering, programming languages, visualisation

1 Introduction

Declarative languages with well-defined semantics and logics provide powerful tools for formal executable specifi-
cation, modeling and analysis of distributed systems. However, complex specifications and analysis results are often
difficult to understand. What is needed is language support for interactive visualization of formal models that allows
users to navigate and query models based on visual representation of underlying formal structures. Requirements
for such a language include a simple syntax that is easily generated and processed by both computer programs and
humans, the ability to describe both graphical representations and actions, and dynamic extensibility.

The JLambda language is designed to meet these requirements. It is an untyped, lexically scoped, interpreted,
Scheme-like language that provides a runtime interface to the Java class library. The interpreter for JLambda is
written in Java and makes extensive use of Java’s built-in reflective capabilities. Following the lead of the Scheme
language definition, we require the JLambda interpreter to support proper tail recursion. The JLambda interpreter’s
implementation language, Java, however, is not a tail recursive language. In general, choosing a non-tail-recursive
language to implement a tail-recursive target language presents obvious difficulties. To overcome these difficulties we
first implemented a straight-forward recursive interpreter, and then applied continuation-passing and register-machine
transformations to obtain an interpreter capable of properly evaluating any JLambda expression. In addition the con-
tinuation passing transformation was refined to provide detailed information about the execution state when runtime
errors occur, thus making JLambda programs easier to debug.

JLambda is a core component of the IOP system [1], an infrastructure for allowing formal reasoning tools to
interoperate using actor style message passing. In addition to the JLambda interpreter, JLambda comes with a
Java class hierarchy, called the Glyphish hierarchy [2], that provides extensible classes to construct interactive
graphical objects at runtime. This hierarchy is inspired by Joel Bartlett’s now deprecated Ezd package [3], and
makes substantial use of the Java 2D [4] classes. The hierarchy also utilizes the Scheme-like features of JLambda.

∗SRI International, Menlo Park, California, USA linda.briesemeister@sri.com
†University of New England, Armidale, Australia, 2350. iam@turing.une.edu.au
‡University of New England, Armidale, Australia, 2350. dporter@turing.une.edu.au
§SRI International, Menlo Park, California, USA clt@cs.stanford.edu

1

Closures, λ-expressions together with their lexical evaluation environment, in particular, provide a rich language in
which to describe control flow, event listeners, as well as static and non-static methods of dynamically created
or extended classes.

A key objective of the JLambda project is a language and implementation that can be used in conjunction with
a variety of formal modeling and analysis systems to enable better understanding of complex models and analysis
results. JLambda is currently being employed in a variety of projects including formal models for autonomous
systems, security protocol design and analysis, and development of formal models of biological processes to aid in
understanding experimental results, support in silico experiments, and generation of testable hypotheses.

1.1 Related Work

While languages using Java’s reflection mechanism or virtual machine are not uncommon, for example there are close
to two hundred languages cited in [5] that use Java or the Java Virtual Machine as a basis, roughly twenty of these
are classed as Scheme or Lisp like. JLambda’s novelty among these is perhaps that it is used by both machines and
humans.

We briefly discuss here four examples: SISC [6], Kawa [7], and JScheme [8], and Skij [9, 10]. SISC is a Scheme
interpreter implemented in Java whose primary goal is rapid execution of the complete Revised5 Report on the Al-
gorithmic Language Scheme definition [11], including proper tail recursion and unrestricted first-class continuations.
The goal of Kawa is a Scheme environment implemented in Java that compiles Scheme code into the byte-code in-
structions of the Java Virtual Machine. Kawa provides mechanisms for the definition, creation, and access of Java
objects, but does not support tail recursion or first-class continuations. JScheme implements the R4R5 standard except
first-class continuations and mutable strings and provides a simple and comprehensive interface to Java via its Javadot
notation which enables access by name to all methods, constructors, and fields of any Java class. Skij was developed
at IBM Watson Labs for exploratory programming in the Java environment. Its purpose is similar to that of JLambda,
and shares several ideas with JLambda. A more detailed discussion of these languages can be found in the JLambda
manual [12]

An alternative approach is the idea of Functional Reactive Programming (FRP) [13], where a functional language
such as Haskell is extended with constructs such as Monads, Arrows, and I/O to support interaction. The basic Haskell
Library can then be extended with primitives for graphics (HGL), robot controllers, and so on.

2 The Language

This section presents a brief overview of the JLambda language. Some examples of JLambda code are included to
give the flavour of the language. A complete definition of JLambda can be found in its reference manual [12].

The JLambda language is a minimalistic, call-by-value, left-to-right evaluation order, lexically scoped language
with closures. It has exactly the same underlying primitive data types as Java, and access to all of Java’s built in
packages and classes, as well as any other Java classes found in the class path.

The syntax of the language is based on the usual Lisp notion of an S-expression. An S-expression is either a string
of characters or a List of zero or more S-expressions. Modeling JLambda on Scheme provides it with several
well-known advantages of the Scheme language, namely, simple and consistent syntax, plain yet powerful control
constructs, and concise, readable programs. In particular, JLambda programs are significantly shorter than equiva-
lent Java programs, as is demonstrated in § 2.1. JLambda is a small language: it contains only fifty-two keywords,
consisting of constructs for: definition and control; arithmetical and boolean operations; constructing and converting
primitive types; creating and operating on Java arrays and strings; interacting with Java’s class library (creating ar-
bitrary objects, accessing and updating fields, and invoking static and non-static methods); and throwing and
handling Java exceptions. JLambda provides no built-in support for general-purpose programming features, such as
filesystem access and interprocess control. These features are instead provided indirectly via JLambda’s run-time
interface to the Java class library.

One of the powerful features of JLambda is it’s closures. A closure is first class structure that encapsulates a λ-
expression (i.e a procedure) together with the lexical environment in which it was created. In JLambda, one creates
a simple closure that adds a constant to its argument, like so:

2

(define addc (let ((c (int 42))) (lambda (x) (+ x c))))

The addc closure can then be applied as follows:

(apply addc (int 5))

which evaluates to the integer 47.
JLambda closures are used heavily in applications as event handlers, and dynamic methods. The following pro-

gram snippet illustrates the creation and registration of event handlers in JLambda. (Note that this excerpt relies on
a particular semantics of JLambda’s let expression: that each binding incrementally augments the lexical environ-
ment.) The closure pressed responds to mouse-press events by updating the location of a java.awt.geom.Point2D$Double
object. It is registered as a handler for mouse-press events by invocation of the setMouseAction method of the
view object. We go into more detail about such uses of closures in § 4.

(let ((view ...)
...
(prevpoint (object ("java.awt.geom.Point2D$Double")))
(pressed (lambda (self event)

(invoke prevpoint "setLocation"
(object ("java.awt.geom.Point2D$Double"

(invoke event "getX")
(invoke event "getY")))))))

(seq
(invoke view "setMouseAction"

java.awt.event.MouseEvent.MOUSE_PRESSED pressed)
...))

2.1 JLambda’s Java Interface

JLambda is designed to be expressive enough to enable full and faithful use of any built-in Java classes. To elaborate
JLambda’s Java interface, we use the following program, which employs Java’s AWT API to create a frame and
display it in the centre of the screen:

(define frameFactory
(lambda (FrameName)
(let ((frame (object ("java.awt.Frame" FrameName)))

(toolkit (sinvoke "java.awt.Toolkit" "getDefaultToolkit"))
(dim (invoke toolkit "getScreenSize"))
(h (lookup dim "height"))
(w (lookup dim "width")))

(seq
(invoke frame "setSize" (/ w (int 2)) (/ h (int 2)))
(invoke frame "setLocation" (/ w (int 4)) (/ h (int 4)))
(invoke frame "setVisible" (boolean true))
frame))))

(apply frameFactory "A Frame")

In a JLambda program any Java class may be accessed by providing its full name, for example, "java.awt.Frame".
Arbitrary Java objects are constructed using the object form, whose first argument should evaluate to a string rep-
resenting a Java class. The interpreter then attempts to find a constructor for that class with matching arguments, and
uses that constructor and the remaining arguments to construct the appropriate object. If no matching constructor is
found an exception is thrown. In the program above, the expression

(object ("java.awt.Frame" FrameName))

causes the interpreter to invoke the java.awt.Frame constructor, with the value of FrameName as the construc-
tor’s argument. Static non static methods of an object may be invoked using the invoke form. To invoke a static
method via the class rather than the object, one uses the sinvoke form. The lookup form provides access to static
and non-static fields of an object.

3

3 The Interpreter

We provide in this section an overview of the the design of the JLambda interpreter; further details of the inter-
preter’s design and implementation can be found in David Porter’s Honours thesis [14]. We begin by showing how the
JLambda interpreter uses Java’s reflection API to enable JLambda programs to access, at run-time, the Java class
library. We then go on to explain the general design of the interpreter, highlighting the way in which the continuation-
passing and register-machine transformations are used.

3.1 Reflection

The Java reflection API is both quirky and low-level. It provides objects that represent meta-level concepts such as
classes, interfaces, fields, methods, constructors, and class member modifiers. It also allows for: the ability to access
or update the value of an object’s field; to invoke an object’s method on a given set of values, or construct a new object
via calling a constructor on a given set of values. What it does not provide is, given a certain sequence of arguments, a
means for resolving which method or constructor one should use. Consequently, it falls to the JLambda interpreter to
decide how this should be done. In Java, method and constructor resolution uses both run-time information and static
compile-time information. The run-time type of the target object is used, together with the compile-time types of the
arguments. In an interpreted language we have no static type information to rely on; consequently, we must attempt
to do the best we can with the possibly incomplete information we have at hand. Namely, the run-time types of the
arguments.

To evaluate a constructor call after evaluating, and determining the types of the arguments, the interpreter searches
for a constructor whose argument types are an exact match. If an exact match is not found, then it searches for the
best match among the publicly declared constructors. The notion of best match is taken to mean the least when taking
into consideration widening, the interface hierarchy, and the class hierarchy. There may be many such choices, and,
in the current implementation, the interpreter simply chooses one of them, making no effort to resolve ambiguities.
If no constructor is found, the expression generates an exception. Resolution of method invocation follows a similar
pattern, except that the notion of best is elaborated slightly from the constructor case to take into account the declared
return type of the method. The method’s return type is examined only when the parameter types match exactly, and in
this case the more specific return type is preferred.

Compared to other implementations of interpreted languages that use Java’s Reflection API, we have adopted a
rather conservative approach. This is because our aim is to provide an interface to Java that is as simple, faithful,
and precise as possible in an untyped, interpreted language. A rather bolder scheme is outlined by Michael Travers
in [9, 15], and used in his language Skij [10], as well as Peter Norvig’s JScheme [8].

A small complication to the procedure for method resolution outlined here arises as a result of a long-standing
and unresolved bug in the Java Reflection API [16]. The bug has to do with access restrictions on inner class objects,
and means that some methods that should be accessible are not. For example, instances of java.util.Iterator
returned by java.util.Collection instances are unusable. When such situations arise we attempt to circumvent
the problem by using the setAccessible method of the java.lang.reflect.AccessibleObject class
to suppress the Java language access checking.

3.2 The Interpreter Design

The interpreter for the JLambda language consists of three components: a parser, a syntax analysis phase, and an
evaluation phase. Choosing Java as the interpreter’s implementation language leads to certain complications in the
interpreter’s design. In general, the simplest way to implement an interpreter of a Scheme-like language is by using a
simple recursive evaluation model in which an expression is evaluated by recursively evaluating each subexpression.
If such an interpreter is implemented in Java it will exhibit recursive execution behaviour, since it inherits the control
structure of the underlying Java system. However, the lack of proper tail recursion in Java means the interpreter
overflows the JVM stack when attempting to evaluate arbitrarily long recursions, such as the computation of long lists.

The goal, therefore, was to design the JLambda interpreter so that it uses an iterative execution process; this was
achieved by implementing the interpreter as a register machine interpreter. In this design, the procedure-calling and

4

argument-passing mechanisms used in the evaluation process are implemented in terms of operations on registers. We
thus obtained an explicit-control interpreter that exhibits iterative execution behaviour.

Converting the interpreter design from a simple recursive evaluation model to a register machine interpreter in-
volved two steps. First, we ensured all recursive calls were tail calls, by transforming the interpreter into continuation
passing style [17]. If the interpreter implementation language was properly tail recursive, this transformation would
have been sufficient to achieve an interpreter with iterative execution behaviour, since properly tail recursive languages
guarantee that tail recursion is equivalent to iteration. However, since Java is the implementation language a further
step is required, in which we manually transformed tail recursion into iteration.

The second step consisted of the transformation of the interpreter from a continuation passing style into a register-
based imperative style. This transformation is based on the following observation: if a set of methods call each other
only by tail calls, we can first rewrite the calls to use variable assignment instead of argument-passing, and we can
then replace method calls with jumps. The register machine transformation consists of systematically performing such
rewrites. The result of performing the continuation passing transformation and the register machine transformation
was an interpreter with iterative execution behaviour. This interpreter can therefore properly evaluate any JLambda
expression. The transformation from recursive to iterative interpreter is a standard technique in the programming
language community. An example worked out in detail can be found in Felleisen’s thesis [18].

The syntax analysis phase serves to improve the interpreter’s execution speed. In this phase all lexical variables in
a JLambda program are replaced by their corresponding lexical addresses in the program structure. Such a program
representation enables the evaluator to retrieve variable values directly from known addresses in the run-time envi-
ronment. Implementing variable lookup operations in this way is a considerable improvement over lookup operations
based on searching the environment. Consequently, the addition to the interpreter of a syntax analysis phase yields a
significant increase in its execution speed.

The use of continuations in the interpreter facilitates detailed error reporting, thus simplifying debugging. Each
continuation possesses an inform method that, when invoked, produces an informative description of the execution
context that it represents (including filenames and line numbers). When an error occurs an exception is generated. This
exception then propagates up the continuation stack accumulating this information, as a backtrace. At the toplevel the
backtrace can be printed out in various customizable levels of detail.

4 Visualisation Classes

The JLambda language evolved at the same time as the Glyphish hierarchy and influenced its design, in partic-
ular it’s use of the JLambda closures as event handlers and dynamic methods. This class hierarchy belongs to the
g2d.glyph package, whose class structure is shown below:

Identifiable

Attributable

Glyphish

Glyph GlyphList

IOPGraph

ClosureGlyph

At the root is the Identifiable class, instances of which have unique global names, these names are used by
the formal tools to refer and interact with them. Beneath this lies the Attributable class, an instance of which
may have new fields added dynamically, in the form of attributes. An attribute has a name and a value. Attribute values
are arbitrary objects, including closures. An attribute with a closure value corresponds to a dynamic method. Directly
beneath Attributable is the root class of all things glyph-like: the abstract class Glyphish. There are three

5

related but distinct aspects to the Glyphish class, how a Glyphish instance: depicts or portrays itself graphically;
handles input events from the keyboard and mouse; and positions or transforms itself.

In Joel Bartlett’s Ezd package a Glyph was something that knew how to draw itself, typically as a sequence of
shapes, and was capable of accepting and responding to user inputs. The Ezd package was developed using the early
Java 1.0 event model, and relied on the java.awt package as it was then, in Java 1.0.

We adopt a similar, though distinct, conceptual approach. Our approach has been strongly influenced by the newer
Java event model, and the clean two dimensional graphics supplied by the Java 2D API. In particular we make heavy
use of the AffineTransform class of the geom subpackage of java.awt, and the newer 2D implementations of
the Shape interface, also of the java.awt package. We have also taken advantage of the Closure class provided
by the JLambda language.

The abstract Glyphish class has three main concrete subclasses: the Glyph class, the GlyphList class, and
the ClosureGlyph class. We also single out the specialized subclass of GlyphList, IOPGraph which we will
discuss later. The Glyph class is the simplest of the direct subclasses of Glyphish. A Glyph instance has a
single java.awt.Shape, border colour, fill colour, and stroke width. A GlyphList is a composite, it consists
of an ordered list of Glyphish things. A ClosureGlyph is the most dynamic, it requires JLambda closures to
implement all the abstract methods required by the Glyphish API. It provides, in essence, a way of defining, at
runtime, Glyphish instances whose methods are defined at runtime, rather than compile time.

A concrete Glyphish instance portrays itself by implementing the abstract method paint declared in the
Glyphish class. In the case of a Glyph instance it will draw itself according to its java.awt.Shape field, fill
colour, border colour and stroke. In the case of a GlyphList it merely delegates, in order, to all of the Glyphish
elements in its list. The ClosureGlyph responds by applying it’s private paintClosure field to the appropriate
Graphics2D object of the java.awt package.

Glyphish instances are capable of handling any input events, i.e. instances of the InputEvent class of the
java.awt.event package. The Glyphish class implements each of the Input event listener interfaces for
the mouse and keyboard. They do so in a uniform way. For each method in the listener interface a Glyphish
instance has a Closure object associated with it. For example in the case of the mouseClicked method of the
MouseListener class, the Glyphish class has the private Closure field mouseClickedAction. This clo-
sure will have arity 2, and uses Luca Cardelli’s trick of having a self argument to implement Java’s this pointer. Call-
ing the mouseClicked method would result in the clickedAction closure being applied to the this pointer
of the Glyphish instance that is responding to the MouseEvent, and the event instance itself.

Positioning, moving, and animating Glyphish instances is done by applying affine transformations (e.g. trans-
lating, rotating, shearing, and scaling) to them.

Another use of the Closure class provided by the JLambda language is in creating event handlers. For each Java
listener class, we provide a corresponding template class that implements the desired listener interface, and extends
the Attributable class. An instance of the template class can be specified by providing Closures for each of
the required methods. As mentioned above, we have adopted the convention that these closures take two arguments,
the self parameter, followed by the event parameter.

The specialized subclass IOPGraph of the GlyphList class is for displaying large complex graphs, that com-
monly arise in formal models of complex systems. The graphs are rendered in an informative way by using the graph
layout tool dot [19], and nodes and edges of the graph, being Glyphish entities, can respond to events from the
user.

5 Applications

JLambda is currently being used in several formal modeling and analysis projects. We discuss highlights of three of
these projects below.

Typical use of JLambda in combination with a formal specification environment involves defining functionality
on both sides along with a communication protocol to coordinate the roles of each tool. On the JLambda side one
defines a library of JLambda functions that

• create graphical elements,

6

Figure 1: Example display of a strand space bundle

• create a frame with appropriate menus, tools, views,

• define actions associated with user gestures,

• and compose messages for peer tools.

In the projects described below the formal tools include the Maude specification and analysis environment. The
IOP platform is used to support communication amongst tools suitably wrapped to behave as actors interacting via
asynchronous message passing. IOP also provides a JLambda interpreter in the form of the Graphics 2D actor. The
interactive Maude module, IMaude, is the basis for defining actor behavior for Maude [1]. The PLA architecture
shown in figure 6 is a typical example of the use of JLambda.

Executable Strand Spaces Specifications

Strand spaces [20] is a mathematical model for analysis of cryptographic and other protocols. In an ongoing project,
Maude and PVS [21] are being used to develop a tool for interactive design and verifiable analysis of security protocols
based on Strand spaces. After specifying a protocol (as a sequence of message exchanges) a protocol designer user
can specify different initial situations, and use the Maude specification of Strand space protocol execution to execute
single runs or search for all possible runs. The result of an execution is a partial order of message send/receive events
(called a bundle). JLambda is used to display this diagram in the traditional Strand space style.
Figure 1 shows an example, while figure 2 is the label key for the figure. Black filled nodes represent events, the
double arrows give the ordering of events on a particular strand (actions of a protocol participant), and the single
arrows represent the causal ordering between the send of a message and its receive. The JLambda library for Strands
includes functions to display strand headers (label and initial node), strand segments (double down arrow followed by
node), and cross edges connecting corresponding send and receive nodes. Each function takes parameters specifying
relative position computed by a bundle layout algorithm executed by Maude. A first version of executable strands is
available at [22].

7

Figure 2: Key for figure 1

Animating Maude specifications: Goal-based autonomous systems

Providing a visual representation of formal specifications of distributed systems (system state and evolution) is im-
portant to make the specifications meaningful to non-experts, and also to help debug complex specifications and
understand emerging behavior. JLambda has been used extensively in a student research project to develop visual,
interactive representations of specifications based on the MDS framework for goal-based autonomous space systems
[23, 24]. This was part of an NSF-NASA project, Formal Checklists for Autonomous Remote Agents [25, 26]. The
starting point is a formal executable specification of a goal based system for controlling a simple autonomous rover
driving on a grid with obstacles. Goals are constraints on values of system state variables. High-level goals are elab-
orated into timed constraint nets which are then executed by a scheduler. A timed constraint net is a directed graph
whose nodes are time points and whose edges are constraints either on a state variable, or the time interval between the
connected points. A goal specification is analyzed by composing it with a formal specification of the device behavior
and carrying out formal checks, including execution of a possible run, search for all possible runs, and model-checking
temporal properties.

The student project developed a visual representation of the device state along with a dashboard representation of
key variables from both the device and the software points of view. The Maude device and goal specifications were
instrumented to update the visual display, by sending messages to the Graphics 2D actor, when changes occur. In
addition a separate control panel was implemented to allow the user to create and execute a goal net specification of
rover tasks without directly typing at Maude. Figure 3 shows the control panel.

Figure 3: The goal net control panel

Figure 4 shows an intermediate stage in the execution of a goal net created using the control panel. The black elements
on the grid in the center represent obstacles, the blue triangle represents the robot, and the pink rectangle represents an
arm of the robot. The lower panel shows the goal net, with elements color coded to indicate their execution state. Goals
are green when they are ready to execute, but have not yet begun execution. They are purple during goal execution,
gray when the goal has finished successfully, and orange when the goal has failed. Time points are red before the
scheduler fires them and yellow when they have been fired and assigned a time value. Time constraints are blue and
are labeled with an interval constraining the time elapsed between the firing of its starting and ending time point.

The JLambda library developed for goal-based operation of a grid Rover includes a function for making the
grid, given dimensions, initial location of the rover, and locations of obstacles. Grid squares and obstacles are simple
glyphs while the rover is a glyph list with components for the rover body, arm, and battery. The IOPGraph class is
extended to a virtual Goalnet class by defining attributes enumerating the different kinds of node (time point, goal,

8

Figure 4: A partially executed goal net

time constraint) and methods (attributes with closure values) to add, remove, and retrieve nodes of each kind. Goalnet
nodes are IOPNodes extended with attributes representing key properties. For example a time constraint node has
attributes giving the min and max elements of the corresponding specification data structure, and goal nodes have an
attribute giving the name of the constrained state variable. Action functions are defined for nodes to display additional
information about the node when the user clicks on that node. Each button on the control panel has an associated
action defined by a JLambda function. Some of the actions update the local goal net, and some of them send update
information to Maude to synchronize the Maude goal net state with the visual representation. The project results
including code, documentation, and instructions for using the system are available at [26].

Pathway Logic Assistant

Pathway Logic [27, 28, 29] is an application of formal methods to the modeling of biological entities and processes.
Currently, we focus on modeling and analysing signal transduction networks in mammalian cells. We represent biolog-
ical knowledge as formal rules and equations using the rewriting logic Maude. Having a formal model of the biological
process in Maude allows for analysis such as dynamically generating pathways using search and model-checking, and
transforming rule executions to Petri nets for visualization and further analysis.

The Pathway Logic Assistant (PLA) is the software suite implementing this approach. Figure 5 shows a screen
shot of PLA’s graphical user interface depicting a signal transduction network as a petri net. In the bipartite graph of
the Petri net, round nodes denote places that encode proteins and complexes together with their chemical modification
(e.g. an activated Mekk4 is labeled “Mekk4-act”). The transitions between places correspond to rewriting rules in
Maude’s knowledge base. The places are generally colored in light and dark blue, where the latter indicates that these
proteins are part of the starting state used to build the pathways from the Maude knowledge base. In the screen shot,
two places are colored green (“Mkk3-act” and “Mkk4-act”) and as such marked as goals. One can select proteins as
goals or as to be avoided and then search for paths and subnets that avoid the respective proteins while reaching the
specified goals. In the top right corner, a thumb nail view of the complete network provides an overview and accepts
mouse clicks and drags to move the porthole into the bigger view of the graph on the left. Other features of the GUI

9

Figure 5: Screen shot of the Pathway Logic Assistant

are zooming capabilities and context information that appears in another tab on the right when users click on nodes
and edges of the graph in the bigger view.

Figure 6 depicts the implementation architecture of the Pathway Logic Assistant software. Based on IOP, the
aforementioned two actors wrapping JLambda and interactive Maude are the main components of PLA. The Maude
actor maintains a data base of biological entities and processes written in the Maude language. On the other side, the
actor containing the JLambda interpreter creates the graphical user interface. For a complex GUI such as PLA, part of
the software is implemented in Java, subclassing some of the visualization classes explained in Section 4 to specialize
functionality and improve runtime performance. These customized Java classes are bundled into a JAR library that gets
loaded at startup time of IOP. Then, we use JLambda code to drive the GUI creation and to facilitate the interaction
with Maude and its knowledge base through IOP. We take advantage of JLambda being interpreted in that smaller
software changes, bug fixes, and quickly adding new features for the biologist user can be done without rolling out a
recompiled JAR and software installer. Instead, we rather modify JLambda source code files and distribute these to
the end user who can simply replace the respective files in his or her installation to enjoy the improved software suite.

Figure 6: Implementation architecture of the Pathway Logic Assistant

10

More information about Pathway Logic is available at [30].

6 Conclusion

JLambda has been relatively stable for over a year now, and as mentioned in this paper is a part of the core in-
frastructure of several ongoing formal modelling research projects. The most recent changes have been adding field
updating, and providing interactive debugging capabilities. The class files, as well as a manual are freely available on
the web [31]. The sources, protected by the GNU general public licence, are available on request.

References
[1] I. A. Mason and C. L. Talcott. IOP: The InterOperability Platform & IMaude: An Interactive Extension of Maude. In

International Workshop on Rewriting Logic and its Applications (WRLA 2004), Electronic Notes in Theoretical Computer
Science. Elsevier Science, 2004.

[2] Ben Funnell. The Glyphics Hierarchy., 2004. http://mcs.une.edu.au/˜iop/Data/Papers/.

[3] Joel Bartlett. Ezd – easy-to-use structured graphics for Java. http://research.compaq.com/wrl/projects/
Ezd/home.html.

[4] http://java.sun.com/products/java-media/2D/forDevelopers/java2dfaq.html. The Java 2D
FAQ.

[5] http://www.robert-tolksdorf.de/vmlanguages.html. Programming Languages for the Java Virtual Ma-
chine.

[6] Scott G. Miller. SISC: A Complete Scheme Interpreter in Java. Technical report, Indiana University, January 2002.

[7] Per Bothner. Kawa – Compiling Dynamic Languages to the Java VM. In Proceedings of the Usenix Annual Technical
Conference, June 1998.

[8] K. Anderson, T. Hickey, and P. Norvig. SILK: A Playful Blend of Scheme and Java. In Proceedings of the Workshop on
Scheme and Functional Programming, pages 13–22, September 2000.

[9] Michael Travers. What is interactive scripting? Dr Dobb’s Journal, 25:103–110, 2000.

[10] http://xenia.media.mit.edu/˜mt/skij/index.html. Skij Homepage, 2004.

[11] Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised5 report on the algorithmic language Scheme. ACM
SIGPLAN Notices, 33(9):26–76, 1998.

[12] Ian A. Mason and David Porter and Carolyn Talcott. The JLambda Language. Technical Report 05-232, MSCS, University
of New England, January 2005. Available at http://mcs.une.edu.au/˜iop/Data/Papers/.

[13] Paul Hudak, Antony Courtney, Henrik Nilsson, and John Peterson. Arrows, robots, and functional reactive programming.
In Summer School on Advanced Functional Programming 2002, Oxford University, Lecture Notes in Computer Science.
Springer-Verlag, 2003. To Appear.

[14] David Porter. An Interpreter for JLambda., 2004. http://mcs.une.edu.au/˜iop/Data/Papers/.

[15] Michael Travers. Scripting and dynamic interaction in Java. Online at http://xenia.media.mit.edu/˜mt/skij/
dynjava/dynjava.html.

[16] http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4071957. The Java Reflection API Bug.

[17] G. Plotkin. Call by Name, Call by Value, and the Lambda Calculus. Theoretical Computer Science, 1, 1974.

[18] M. Felleisen. The Calculi of Lambda-v-cs Conversion: A Syntactic Theory of Control and State in Imperative Higher-Order
Programming Languages. PhD thesis, Indiana University, 1987.

[19] Emden Gansner, Eleftherios Koutsofios, and Stephen North. Drawing graphs with dot. www.research.att.com/sw/
tools/graphviz/dotguide.pdf.

[20] F. Javier Thayer Fabrega, Jonathan C. Herzog, and Joshua D. Guttman. Strand spaces: Proving security protocols correct.
Journal of Computer Security, 7:191–230, 1999.

[21] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A Tutorial Introduction to PVS. Technical report, SRI International,
1995. Presented at WIFT ’95: Workshop on Industrial-Strength Formal Specification Techniques, Boca Raton, Florida.

11

[22] Strand Spaces in Maude and PVS, 2004. http://www.csl.sri.com/users/clt/StrandWeb/.

[23] N. Muscetolla, P. Pandurang, B. Pell, and B. Williams. Remote Agent: To Boldly Go Where No AI System Has Gone Before.
Artificial Intelligence, 103((1–2)):5–48, 1998.

[24] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Software Architecture Themes In JPL’s Mission Data System. In IEEE
Aerospace Conference, USA, 2000.

[25] G. Denker and C. L. Talcott. Formal checklists for remote agent dependability. In Fifth International Workshop on Rewriting
Logic and Its Applications (WRLA’2004), Electronic Notes in Theoretical Computer Science. Elsevier, 2004.

[26] http://www.csl.sri.com/users/denker/remoteAgents/. Formal checklists for remote agent dependability,
2004.

[27] S. Eker, M. Knapp, K. Laderoute, P. Lincoln, and C. Talcott. Pathway Logic: Executable models of biological networks.
In Fourth International Workshop on Rewriting Logic and Its Applications, volume 71 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2002.

[28] C. Talcott, S. Eker, M. Knapp, P. Lincoln, and K. Laderoute. Pathway logic modeling of protein functional domains in signal
transduction. In Proceedings of the Pacific Symposium on Biocomputing, January 2004.

[29] Merrill Knapp et al. Pathway logic: Helping biologists understand and organize pathway information. In Poster abstracts of
IEEE Computational Systems Bioinformatics Conference (CSB’05), pages 155–156, August 2005.

[30] http://www.csl.sri.com/users/clt/PLWeb/. Pathway Logic, 2004.

[31] http://mcs.une.edu.au/˜iop. The IOP Homepage.

12

