
An Interpreter for JLambda

By

David Porter

A thesis submitted for the degree of

Bachelor of Computing Science (Honours)

of The University of New England

December 2004

DECLARATION

I certify that the substance of this thesis has not already been submitted for any degree

and is not currently being submitted for any other degree.

I certify that to the best of my knowledge, any help received in preparing this thesis, and

all sources used, have been acknowledged in this thesis.

. .

ii

Acknowledgements

I would like to thank my Honours supervisor, Ian Mason, for his enthusiasm, help, and

timely encouragement during this work. His patience, despite my many questions, is greatly

appreciated.

I must also thank Carolyn Talcott for her invaluable insights and guidance in this work,

and for her generosity and dedication in suggesting improvements to drafts of this thesis.

Finally, I am forever indebted to Sarah for her understanding, endless forbearance, and

encouragement when it was most required.

iii

Abstract

In this thesis an interpreter for JLambda, an untyped Scheme-like lexically scoped language,

is designed and implemented in the Java programming language. We describe the difficul-

ties that arise when a non-tail recursive implementation language is chosen to implement

an interpreter for a tail recursive target language. We show that these difficulties can

be overcome by applying the continuation passing style transformation and the register

machine transformation to the interpreter implementation.

We also explain several modifications to the implementation of the interpreter that yield

an increase in the interpreter’s execution speed. We demonstrate how those improvements

can be realised by exploiting various features of the Java language.

iv

Contents

Acknowledgements iii

Abstract iv

1 Introduction 1

2 Related Work 3

2.1 A Comparison of JLambda and JScheme 4

3 The JLambda Language. 6

3.0.1 Variables . 6

3.0.2 Definitions . 6

3.0.3 Primitive Data . 7

3.0.4 Numeric Operations . 8

3.0.5 Boolean Relations . 9

3.0.6 Arrays . 9

3.0.7 Strings . 12

3.0.8 Arbitrary Objects . 12

3.0.9 Control Forms . 16

3.0.10 Subtyping . 20

3.0.11 Attributes . 21

3.0.12 Miscellaneous Operations . 21

3.0.13 Class Names . 21

4 A Complete JLambda Program 23

4.1 An Overview of the glyphics Hierarchy 23

v

4.2 Clicker Table of Contents . 25

4.3 Code Listing for clicker . 25

5 A Recursive Interpreter for JLambda 31

5.1 The List Class . 31

5.2 The Parser . 33

5.3 Environments . 33

5.4 The Evaluation Model . 33

5.5 The Flaw in the Design . 36

6 A Register Machine Interpreter for JLambda 38

6.1 The Register Machine . 39

6.2 Continuations . 41

6.3 The Evaluation Process . 44

6.4 An Example of Evaluation . 46

6.5 Evaluation of let Expressions . 50

6.6 Execution Behaviour of the Register Machine Interpreter 53

7 Interpreter Optimisations 58

7.1 Interned Strings . 58

7.2 Hash Table Dispatch . 61

7.3 Continuation Pools . 63

7.4 Replacing Variables with Lexical Addresses 64

7.4.1 Stack Frame Environments . 66

7.4.2 Syntactic Analysis . 68

8 Evaluation of Interpreter Optimisations 76

8.1 The tak Benchmark . 77

8.1.1 Performance Results . 78

8.2 The clicker Benchmark . 79

8.2.1 Performance Results . 81

8.3 Discussion of Performance Results . 82

8.3.1 Interned Strings . 82

8.3.2 Hash Table Dispatch . 82

vi

8.3.3 Continuation Pools . 83

8.3.4 Addition of Syntax Analysis . 83

9 Conclusions and Suggestions for Further Work 84

Bibliography 87

vii

List of Tables

2.1 Examples of JScheme’s Javadot notation 4

8.1 Summary of the tak benchmarks . 78

viii

List of Figures

8.1 Execution times of the tak benchmark . 79

8.2 Execution times of the clicker benchmark 81

ix

Chapter 1

Introduction

This thesis presents techniques for using the Java [8] programming language to implement

an efficient interpreter for the JLambda language. The JLambda language is a component

of the IOP[10] project, which is aimed at developing an infrastructure for allowing formal

reasoning tools to interoperate, and to interact with users in a transparent and elucidating

graphical fashion.

The JLambda language is an untyped Scheme-like [9] lexically scoped interpreted lan-

guage that provides a runtime interface to the Java class library. JLambda makes very heavy

use of Java’s built-in reflective capabilities. It is designed to be efficient and expressive

enough to enable full and faithful use of any built-in Java classes.

In this thesis we describe the difficulties that arise when one chooses a non-tail recursive

implementation language for an interpreter of a tail recursive target language, and explain

how those difficulties may be overcome. We also explain several modifications to the

interpreter’s implementation that yield an increase in the interpreter’s execution speed.

We demonstrate how those improvements can be realised by exploiting the features of the

Java programming language.

Chapter 2 outlines other work that is related to the work presented here. We list three

Scheme interpreters that are implemented in Java, and describe the ways in which the

intentions of those projects differ from ours.

A detailed description of JLambda can be found in Chapter 3. We provide an overview

of the language and a description of its syntax and semantics. We also explain the the

features provided for run-time access to the Java language facilities.

A example of a complete JLambda program is presented it Chapter 4. The program,

1

CHAPTER 1. INTRODUCTION 2

clicker, highlights many of the interesting features of JLambda, giving particular attention

to the creation and manipulation of Java objects.

In Chapter 5, we begin by presenting a straight-forward recursive implementation, in

Java, of an interpreter for the JLambda language. We then demonstrate that although

a recursive implementation has the virtues of being simple to implement and easy to

understand, the interpreter we have constructed cannot properly evaluate all JLambda

expressions. Finally, we explain why these difficulties are consequences of choosing as the

implementation language a language that is not tail recursive.

A solution to these difficulties is provided in Chapter 6. We use the continuation-passing

transformation followed by the register-machine transformation to convert the interpreter

from one that has recursive execution to one that has iterative execution. The chapter

contains a detailed explanation of how we implement these techniques in Java.

Chapter 7 presents four modifications to the implementation of the interpreter, all with

the goal of increasing the interpreter’s execution speed. We demonstrate the implementa-

tion of each of the modifications, and create a new version of the interpreter for each of

the modifications.

Finally, in Chapter 8 we evaluate the modifications to the interpreter’s implementation

that were made in Chapter 7. Two benchmark programs are introduced, and their use in

comparing the execution speeds of the four interpreters is explained. We then present and

examine the results of running each of the interpreters with the benchmark programs.

Chapter 2

Related Work

There are several existing Scheme interpreters that use Java as their implementation lan-

guage. Three well-known examples are Sisc [11], Kawa [4], and JScheme [2]. Although

all three of these projects aim to produce a Java-based implementation of the Scheme

language, they have each have unique characteristics.

The objective of the Sisc is to provide a lightweight, platform-independent Scheme

system whose primary goal is rapid execution of the complete R5RS and future Scheme

standards. SISC uses modern interpretation techniques, and outperforms all existing Java

Virtual Machine interpreters, often by more than an order of magnitude.

Kawa is a Scheme environment, written in Java, and that compiles Scheme code into the

byte-code instructions of the Java Virtual Machine. Kawa is a full Scheme implementation

that supports all of the required and optional features of the R5RS Scheme standard except

proper tail recursion and unrestricted continuations.

The JScheme project is a dialect of Scheme which features a simple and comprehensive

interface to Java. JScheme allows one to access all methods, constructors, and fields for

any Java classes by name; it provides access to Java literals, Java scalar operations, Java

threads, and Java exception handling; and all of the features of the R4RS Scheme standard,

with two exceptions: continuations are only partially supported and strings are immutable.

The primary motivations of all three of these projects differ from those of JLambda:

whereas Sisc, Kawa and JScheme all seek to provide a complete and faithful implementation

of the Scheme language, JLambda does not. Instead, JLambda’s purpose is to provide a run-

time interface to the Java classes, and to some specific classes of the IOP project, of which

JLambda is a component.

3

CHAPTER 2. RELATED WORK 4

There are several important features of Scheme that JLambda does not implement;

for example, JLambda has no support for first-class continuations or macros. A further

difference between JLambda and the Scheme implementation listed above, is that JLambda

does not attempt to implement the Scheme data types, such as symbols and pairs, and the

various number types, but instead bases its types on the underlying Java types.

2.1 A Comparison of JLambda and JScheme

Of the three projects mentioned, JScheme appears to be closest in spirit to JLambda. In

this section we compare the interface to Java provided by JScheme to that provided by

JLambda.

The interface to Java provided by JScheme is called the Javadot notation. This notation

provides access to all Java classes, constructors, methods, and fields on the classpath.

Table 2.1 provides some examples of this notation.

Syntax Type of Member Example
“.” at the end constructor (Font. NAME STYLE SIZE)

“.” at the beginning instance member (.setFont COMP FONT)

“.” only in the middle static member (Math.round 123.458)

“.class” suffix Java class Font.class

“$” at the end static field Font.BOLD$

“$” at the beginning package-less class $Foo.class

Table 2.1: Examples of JScheme’s Javadot notation

Clearly, JScheme’s Java interface is designed to closely follow Java syntax. In contrast,

the Java interface provided by JLambda is intended to follow Scheme syntax.

JLambda and JScheme also differ in the support they provide for constructing interactive

graphical objects. JScheme defines some helper classes for easily specifying event handlers.

The JScheme expression

(Listener. (lambda (e) EXPR))

returns an object that implements all of the Java Listener interfaces. The action for all

methods of these interfaces is to call the lambda expression on the event.

In JLambda, however, event listeners may be registered only for instances of classes in

the glyphics class hierarchy, which is also a component of the IOP project, and which is

described in Chapter 4.

CHAPTER 2. RELATED WORK 5

More generally, JScheme provides sufficient language facilities for constructing any

interactive graphical Java object. In JLambda, however, interactive graphical objects must

be constructed using the glyphics class hierarchy.

Chapter 3

The JLambda Language.

The Scheme-like JLambda language is a call-by-value left to right evaluation ordering,

lexically scoped language with closures. It has exactly the same underlying primitive data

types as Java, and access to all of Java’s built in packages and classes.

A JLambda expression is either a string of characters or a List.

3.0.1 Variables

A string of characters is interpreted as a variable, and is evaluated as follows: First see if

it is a static Java field e.g.

java.awt.Color.black,

or

java.awt.geom.GeneralPath.WIND_EVEN_ODD,

if it is, return the current value of that field. Next see if it is bound in the current lexical

environment, if it is return its current value. Otherwise look to see if it is bound in the

current global environment, if it is return its current value, else throw an unbound variable

exception.

3.0.2 Definitions

Global definitions are made using the define form. We provide the usual two Scheme

versions. The more general form simply binds the value of <exp> to the identifier <name>

(which is not evaluated):

6

CHAPTER 3. THE JLAMBDA LANGUAGE. 7

(define <name> <exp>)

The more specific function or closure definition version is

(define <name> (<param1> ... <paramN>) <form>)

which binds the name <name> to the corresponding closure, in the global environment.

Note that the latter is just an abbreviation for a variant of the former form. Namely

(define <name> (lambda (<param1> ... <paramN>) <form>))

We will discuss closures, and lambda expressions shortly, along with the lexical binding

form let.

3.0.3 Primitive Data

Primitive data is represented by a primitive data expression, which is a list of length two:

(<tag> <exp>)

Neither the <tag> position nor the <exp> is evaluated. The <tag> should be the name of

one of Java’s primitive data types:

boolean byte double char float int long short

while <exp> should be a sequence of characters. It is parsed as the appropriate data, for

example (int 10) will be parsed as the number 10, a Java int, while (char ’C’) and

(boolean false) will be parsed as Java’s character C, and boolean false, respectively.

If parsing as such fails, then it is the assigned the default zero value of that Java data

type (false in the case of a boolean), and a warning to standard error is issued.

The usual literals can be used within these primitive data expressions, a representative

sample is given here.

(char 88) ; evaluates to X

(char ’X’) ; evaluates to X

(char ’\130’) ; evaluates to X

(char ’\u0058’) ; evaluates to X

(char ’\n’) ; evaluates to a new line

(byte 127) ; evaluates to 127

CHAPTER 3. THE JLAMBDA LANGUAGE. 8

(byte 128) ; evaluates to 0 and an error is reported

(int 123456) ; evaluates to 123456

(int 123456.7) ; evaluates to 0 and an error is reported

(float 2.5e+27) ; evaluates to 2.5E27

(boolean true) ; evaluates to true

(boolean 0) ; evaluates to false

It should be pointed out that unadorned strings that consist solely of digits, for example

1234567890, are bonafide variables, and can be bound both lexically and globally. To

regard them as numbers they need to be wrapped in a primitive data expression. For

example, there is nothing wrong with initializing the global environment via the following

sequence of expressions.

(define 0 (int 0))

(define 1 (int 1))

...

(define 100 (int 100))

3.0.4 Numeric Operations

The usual arithmetic operations are provided. These work on numbers and chars, not

booleans. These follow the usual Java contortions, see section 5.6, pages 74–76 of [8]. The

expressions are evaluated, they are both widened to ints if they are smaller. If one is

bigger than an int they are both widened to that type, then the operation is performed.

(- <exp>)

(- <exp> <exp>)

(* <exp> <exp>)

(+ <exp> <exp>)

(/ <exp> <exp>)

(% <exp> <exp>)

To complete the arithmetic operations we provide a corresponding narrowing operation:

(narrow <exp> <exp>)

This performs one of Java’s 23 primitive narrowing conversions (See section 5.1.3, page

55, of [8]). The expressions are evaluated in left to right order. The second <exp> should

CHAPTER 3. THE JLAMBDA LANGUAGE. 9

evaluate to one of the strings: byte, short, char, int, long, or float. Indicating the

desired primitive data type. The first expression should evaluate to a primitive numeric

type (including char). The usual loss of precision occurs.

3.0.5 Boolean Relations

We provide the usual binary relations on numbers:

(< <exp> <exp>)

(> <exp> <exp>)

(<= <exp> <exp>)

(>= <exp> <exp>)

Non numeric arguments will cause an exception to be thrown.

Equality is a boolean relation defined on all types of data:

(= <exp> <exp>)

The expressions are evaluated in left to right order. The equality expression then returns

true if either both values are null, or neither are null and both are booleans of the same

value, or both are characters of the same value, or both are numbers and are equal, or the

second object satisfies the first Object’s equals method.

There is an inequality expression:

(!= <exp> <exp>)

which is the same as (not (= <exp> <exp>)).

3.0.6 Arrays

Arrays may be constructed and manipulated in a direct manner.

Array Construction

There are two forms of array construction, one corresponds to making an an empty array

of a particular size, the other corresponds to making an array, and assigning its contents.

A zeroed array of a particular length is constructed via:

CHAPTER 3. THE JLAMBDA LANGUAGE. 10

(mkarray <type> <exp>)

whereas an array is constructed and assigned via:

(array <type> <exp_1> <exp_N>)

In both cases <type> is either a primitive data tag or else the full name of a Java class,

<type> is not evaluated). In the mkarray case the expression <exp> should evaluate to an

integer expression (or something smaller), and an array of that length is constructed and

zeroed, according to the nature of <type> in the usual Java way. In the array case of an

array of of length N is constructed. There can be zero or more elements <exp_i>, and they

should all be of the appropriate type. The contents of the constructed array are initialized

to be the values of the <exp_i>, evaluated from left to right. Each of the values of the

expressions should be able to be considered as an element of the class or type represented

by the <tag>. null is allowable in the case that the <tag> names a Java class. Widening

is allowable in the case of primitive data, as is upcasting to a interface or superclass in the

case that the <tag> names a Java class. Otherwise an error will be reported.

In the following examples a0 will be an array of length 88, that contains that many

falses, a1 will name an array of integers of length 3, whereas a2 will name an array of

objects of length 1.

(define a0 (mkarray int (char ’X’)))

(define a1 (array int (char ’X’) (byte 3) (short 7)))

(define a2 (array java.lang.Object java.lang.System.err))

(define a3 (array [I a1 a1)))

(define a4 (array [Ljava.lang.Object; a2 a2 a2))

To make an array of arrays one must use Java’s quaint array type naming conventions,

see section 20.3.2, page 466, of [8].1 In these examples a3 is an array of integer arrays, and

a4 is an array of object arrays.

Array Access

The elements of an array are accessed via:

1Java’s internal name for an array class consists of the name of the element type (B for byte, C for
char, D for double, F for float, I for int, J for long, S for short, Z for boolean, and Lclassname; for
classes or interfaces) preceeded by one or more [characters, depending on the depth of array nesting.
Thus [[[[Z would be the name for an array of arrays of arrays of arrays of booleans.

CHAPTER 3. THE JLAMBDA LANGUAGE. 11

(aget <array> <exp>)

which returns the value of <array>[<exp>], both <array> and <exp> are evaluated. For

example, in the context of the previous array construction examples, both of these expres-

sions

(aget a1 (int 0))

(aget (aget a3 (int 1)) (int 0))

evaluate to 88. Whereas

(aget a2 (int 0))

(aget (aget a4 (int 1)) (int 0))

both evaluate to the same instance of the java.io.PrintStream class associated with

the standard error stream.

Array Assignment

Similarly an array may be set via:

(aset <array> <exp> <expV>)

which both sets and returns the new value of <array>[<exp>]. All three subexpressions

are evaluated from left to right. As in the case of array construction the value of the

expression <expV> must be an allowable element of the array.

So to continue our running examples, we could modify our integer array, a1, by evalu-

ating the expression

(aset a1 (int 0) (char ’Z’))

and accessing a1 would reflect this change

(aget a1 (int 0))

and evaluate to 90.

CHAPTER 3. THE JLAMBDA LANGUAGE. 12

3.0.7 Strings

The Scheme reader will interpret any string of characters beginning and ending with the

character " as the corresponding Java string (without the two occurrences of the character

"), actually "foo" is interpreted as (quote foo), which evaluates to the Java String foo.

String concatenation is provided by the concatenation form:

(concat <exp> <exp>)

This form of String concatenation, evaluates each expression and concatenates the result

(using the toString() method of each object returned, and the usual conversions in the

case of primitive data). So a simple example of this is that

(concat (char ’\t’) "A " "short " "sentence.")

evaluates to a string that prints as

A short sentence.

3.0.8 Arbitrary Objects

Object Construction

Arbitrary Java objects may be constructed using the following form:

(object (<exp> <exp1> ... <expN>))

The arguments are, as usual evaluated from left to right, the first argument <exp> should

evaluate to the full name of a Java class. If the so named Java class is not public an

exception is thrown. The interpreter then attempts to find a constructor for that class with

matching arguments, and using that constructor and arguments, constructs the appropriate

object.

For example we can construct a generic object by evaluating

(object ("java.lang.Object"))

and a wrapper object of the character X via

(object ("java.lang.Character" (char ’X’)))

A slightly more interesting example is a frame

CHAPTER 3. THE JLAMBDA LANGUAGE. 13

(define frame (object ("java.awt.Frame" "A Frame")))

that we will futz with shortly.

However, first a little more needs to be said about the resolution or search for the

appropriate constructor to use. It is, of course, the runtime types of the values of the

arguments <exp1> ... <expN> that are used to determine the appropriate constructor. If

an argument’s value is null it’s type is treated like a wild card.

N.B. Only constructors that are declared public qualify in this search.

The search proceeds as follows. First the interpreter looks for a constructor that exactly

matches the argument types (using the

public Constructor getConstructor(Class[] parameterTypes)

method of the java.lang.Class class). Otherwise we look among the public constructors

for the best match, the candidates are chosen from those returned by the

public Constructor[] getConstructors()

method of the java.lang.Class class, not, for example, the

public Constructor[] getDeclaredConstructors()

method of the java.lang.Class class). The notion of best is taken to mean the least when

taking widening, the interface hierarchy, and the class hierarchy into consideration. If no

constructor is found an exception is thrown.

The null object reference is obtained by the special form:

(object null)

which evaluates to the null object reference.

Field Access

Static and non-static fields of an object can be accessed via:

(lookup <target> <field>)

The <target> and <field> positions are evaluated from left to right. The interpreter then

looks for a field belonging to the object that the <target> evaluates to. The value of that

field is returned. If no corresponding field is found an exception is thrown. If <target>

does not evaluate to an object an exception is also thrown.

For example the following expressions both evaluate to

CHAPTER 3. THE JLAMBDA LANGUAGE. 14

(lookup a1 "length")

(lookup a4 "length")

to the integer 3.2

It is, of course, the runtime type of the value of <target> that is used in determining

the appropriate field, and its value. (Since this is an interpreted language, there is no

sensible notion of compile time type.) Thus static fields are probably best looked up via

the class rather than an instance if there is the possibility of ambiguity.

The value of a static field may also be accessed from the class via the usual notation

java.lang.Math.PI

Method Invocation

Static and non static methods of an object may be invoked using the following form:

(invoke <target> <method> <exp1> ... <expN>)

The arguments are evaluated from left to right, and then the interpreter attempts to find

a method, whose name is the value of <method> (which should be a String), with the

appropriate arguments.

Thus for example we could configure and display our frame via the following sequence

of invocations

(invoke frame "setSize" (int 50) (int 50))

(invoke frame "setLocation" (int 10) (int 10))

(invoke frame "setVisible" (boolean true))

which would cause the frame to be a square of fifty pixels positioned in the top left hand

corner of the screen.

Again more needs to be said about how the method gets selected. It is the runtime

method of the corresponding value of <target> that is subsequently found and invoked.

Unless that class is not public, in which we use the first public superclass. If no matching

method is found an exception is thrown. The search is almost identical to the one under-

taken in the object construction case. It is, of course, the runtime types of the values of

2That these evaluate correctly is due to an ad hoc clause in our interpreter, since from the point of view
of Java’s reflection API, length is not a field of an array, contradicting the Java language specification,
see section 10.7, page 197, of [8]

CHAPTER 3. THE JLAMBDA LANGUAGE. 15

the arguments <exp1> ... <expN> that are used to determine the appropriate method. As

in the constructor case, if an argument’s value is null it’s type is treated like a wild card.

N.B. Only methods that are declared public qualify in this search.

First the interpreter looks for a method that exactly matches the argument types (using

the

public Method getMethod(String name, Class[] parameterTypes)

method of the java.lang.Class class). Otherwise we look among the public methods

for the best match, the candidates are chosen from those returned by the

public Method[] getMethod()

method of the java.lang.Class class, not, for example, the

public Method[] getDeclaredMethods()

method of the java.lang.Class class). The notion of best is elaborated slightly from the

constructor case to take into account the declared return types of the method. This is only

used when the parameter types match exactly, and in this case the more specific return

type is preferred. (See sections 8.2 and 8.4 of [8], and the API for the

public Method getMethod(String name, Class[] parameterTypes)

method of the java.lang.Class class). If no method is found an exception is thrown.

In the case where one wishes to invoke a static method via the class rather than the

object we include the following form:

(sinvoke <target> <method> <exp1> ... <expN>)

In this case <target> should evaluate to a string that names the desired class. The

evaluation then proceeds in a similar fashion to the non static case.

So for example if we wished to configure and position our frame, so that it was half

the size of our screen, and centered therein, we could do the following

(define toolkit (sinvoke "java.awt.Toolkit" "getDefaultToolkit"))

(define dim (invoke toolkit "getScreenSize"))

(define h (lookup dim "height"))

(define w (lookup dim "width"))

(invoke frame "setSize" (/ w (int 2)) (/ h (int 2)))

(invoke frame "setLocation" (/ w (int 4)) (/ h (int 4)))

(invoke frame "setVisible" (boolean true))

CHAPTER 3. THE JLAMBDA LANGUAGE. 16

sequence of instructions.

To give another example, the class object corresponding to java.lang.Math can be

obtained, and named, via the expression

(define math (sinvoke "java.lang.Class" "forName" "java.lang.Math"))

But it would be a mistake to try and access static fields of the java.lang.Math class,

say PI, by then doing

(lookup math "PI")

because this will actually end up looking for a field called "PI" in the class that math is

an instance of, i.e. java.lang.Class. To access static fields via the class use:

java.lang.Math.PI

3.0.9 Control Forms

The usual Scheme/Lisp forms are provided.

Lexical Binding

Lexical binding is available via:

(let (

(<var1> <exp1>)

(<var2> <exp2>)

...

(<varN> <expN>)

)

<exp>

)

This expression incrementally augments the current lexical environment. I.e. the binding

of <var1> to the value of <exp1> is visible in the evaluation of <exp2>, and all subse-

quent expressions. The value of the entire expression is the value of <exp> in the fully

augmented environment. So for example if one were nostalgic for the initial UNIX process

file descriptor table, one could construct the following array:

CHAPTER 3. THE JLAMBDA LANGUAGE. 17

(let ((0 java.lang.System.in)

(1 java.lang.System.out)

(2 java.lang.System.err))

(array java.lang.Object 0 1 2))

Sequencing

Sequencing is available via the form:

(seq <exp1> ... <expN>)

The value returned from a sequencing expression is the value returned by the last expression

in the sequence.

Thus a simple use of these last two forms would be to construct our centered frame,

without littering the global environment with debris.

(let ((frame (object ("java.awt.Frame" "A Frame")))

(toolkit (sinvoke "java.awt.Toolkit" "getDefaultToolkit"))

(dim (invoke toolkit "getScreenSize"))

(h (lookup dim "height"))

(w (lookup dim "width")))

(seq

(invoke frame "setSize" (/ w (int 2)) (/ h (int 2)))

(invoke frame "setLocation" (/ w (int 4)) (/ h (int 4)))

(invoke frame "setVisible" (boolean true))

frame)

)

Lambda Expressions and Closures

Closures are obtained by evaluating the corresponding lambda form:

(lambda (<param1> ... <paramN>) <exp>)

The value of such an expression is a closure, a pair consisting of the lambda expression,

and the lexical environment at the time of evaluation. Thunks (the case when N is zero)

are permissible. As an example of this we could define and name a centered frame factory

as follows.

CHAPTER 3. THE JLAMBDA LANGUAGE. 18

(define frameFactory

(lambda (FrameName)

(let ((frame (object ("java.awt.Frame" FrameName)))

(toolkit (sinvoke "java.awt.Toolkit" "getDefaultToolkit"))

(dim (invoke toolkit "getScreenSize"))

(h (lookup dim "height"))

(w (lookup dim "width")))

(seq

(invoke frame "setSize" (/ w (int 2)) (/ h (int 2)))

(invoke frame "setLocation" (/ w (int 4)) (/ h (int 4)))

(invoke frame "setVisible" (boolean true))

frame)

)

)

)

Closure Application

Application of a closure to the appropriate number of arguments is via the apply form:

(apply <exp> <exp1> ... <expN>)

To litter our screen with annnoying popups we could then do

(apply frameFactory "Viagra popup")

(apply frameFactory "Nigerian bank scam")

(apply frameFactory "Lottery notification")

(apply frameFactory "Random porn site here!")

and save other people the time and effort.

Iteration

A iteration form is included based on the Scheme do form:

(do (

(<var_1> <init_1> <step_1>)

...

CHAPTER 3. THE JLAMBDA LANGUAGE. 19

(<var_N> <init_N> <step_N>)

)

(<test> <exp> ...)

<command> ...)

Evaluation of a do form proceeds in two steps, an initialization phase followed by an itera-

tion phase. In the initialization phase the <init_i> expressions are evaluated sequentially

in the outer environment. Their values are then bound to the variables <init_i> to form

the do environment, and the iteration phase commences. In each iteration the following

takes place. The <test> expression is evaluated, if it does not evaluate to a boolean an

exception is thrown. If it evaluates to true, then the <exp> ... are evaluated in order,

and the value of the last expression is the value of the entire do form. Otherwise each of

the <command> ... expressions are evaluated for their effect, then the variables in the do

environment are updated, sequentially, to be the values of the <step_i> forms, and the

next iteration commences.

So a simple example is

(do (

(i (int 0) (+ i (int 1)))

(str " " (concat str " " i))

)

((= i (int 10)) str)

(invoke java.lang.System.err "println" str)

)

)

prints out a triangle of numbers:

1

1 2

1 2 3

1 2 3 4

1 2 3 4 5

1 2 3 4 5 6

1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9

CHAPTER 3. THE JLAMBDA LANGUAGE. 20

Branching

Both binary and ternary forms of the branching primitive are allowed:

(if <test> <then>)

(if <test> <then> <else>)

In both the binary and ternary forms the <test> should return a boolean, The binary

form returns null if <test> is false.

Boolean Operations

The related propositional forms are as usual:

(and <exp> <exp>)

(or <exp> <exp>)

(not <exp>)

The expressions are evaluated from left to right, their values should be boolean, otherwise

an exception is thrown. In the case of and, evaluation is terminated on the first false value,

while in the case of or, evaluation is terminated upon the first true value encountered.

Quoting

Finally evaluation can be prevented via the usual quote form:

(quote <exp>)

which returns the unevaluated <exp> as data, either a String or a List.

3.0.10 Subtyping

There is a version of Java’s instanceof operator. The expression:

(instanceof <exp> <exp>)

returns Java’s idea of whether or not the value of the first <exp> is an instance of the class

named by the (String) value of the second <exp>. E.g.

(instanceof "java.lang.String" "java.lang.String") ==> true

CHAPTER 3. THE JLAMBDA LANGUAGE. 21

Note that there is a clear distinction made between primitive data and the associated

wrapped form, an expression such as:

(instanceof (int 7) "java.lang.Integer") ==> false.

3.0.11 Attributes

Attributes, akin to dynamic fields, are manipulated, for efficiency, via the dedicated forms:

(setAttr <exp> <exp> <exp>)

(getAttr <exp> <exp> [<default>])

rather than by the corresponding methods of the object involved (which must extend the

glyphics.Attributable interface).

3.0.12 Miscellaneous Operations

A file may be loaded using the load expression:

(load <exp>)

Graphical objects that are manipulated by other actors (for example formal reasoning tools

such as Maude and PVS) may be assigned unique identifiers by them. To access an object

by it’s unique identifier the fetch form is used:

(fetch <exp>)

An object, belonging to a class extending glyphics.Identifiable, may be assigned a

unique identifier using the setUID method.

3.0.13 Class Names

All of Java’s classes may be accessed by their full names. There is no import mechanism,

other than that provided by the lexical and dynamic binding primitives:

(define Vector "java.util.Vector")

(let ((Line "java.awt.geom.Line2D$Double")

(victor (object (Line (int 0) (int 0) length (int 0))))

(object (Vector victor)))

CHAPTER 3. THE JLAMBDA LANGUAGE. 22

Note that, following Java’s reflection conventions, inner classes are accessed via the $

rather than the ..

Chapter 4

A Complete JLambda Program

In this chapter we present a complete example of a JLambda program. The program,

clicker, contains the most interesting features of JLambda, namely, the creation and

manipulation of Java objects, and the use of closures [3] as event handlers. Furthermore,

clicker is one of the benchmark programs used in Chapter 8 for comparing the execution

efficiency of various versions of the JLambda interpreter.

When the clicker program is run, it displays a window containing a single circular

node. Clicking anywhere in the window creates a new node at that point. The user can

change the colour of an existing node by shift-clicking on it; a dialogue box will appear,

allowing the user to select a new colour for the node. Finally, existing nodes can be dragged

using the mouse.

The clicker program constructs graphical objects using the glyphics class hierar-

chy, which is a component of the IOP project. We provide an overview of the glyphics

hierarchy in Section 4.1.

In Section 4.2 we present a “table of contents” for the clicker program code, making

clear the lexical structure of the program to aid navigation. Section 4.3 contains details

each section of the clicker program code, along with an explanation of its operation.

4.1 An Overview of the glyphics Hierarchy

The glyphics class hierarchy provides JLambda with enough built in classes to effectively

construct, at runtime, any desired interactive graphical object.

The root class of all things glyph-like is the abstract class Glyphish. It has three

23

CHAPTER 4. A COMPLETE JLAMBDA PROGRAM 24

main immediate concrete subclasses: the Glyph, the GlyphList, and the ClosureGlyph.

A Glyph instance has a single java.awt.Shape, border colour, fill colour, and stroke

width. A GlyphList is a composite; it consists of an ordered list of Glyphish things. A

ClosureGlyph is the most dynamic; it requires closures (in JLambda) to implement all the

methods required by the Glyphish API.

A concrete Glyphish instance portrays itself by implementing the abstract method

public abstract void paint(java.awt.Graphics2D g2d);

declared in the Glyphish class. In the case of a Glyph instance it will draw itself according

to its java.awt.Shape field, fill colour, border colour and stroke.

Glyphish instances are capable of handling any input events, that is, instances of

the InputEvent class of the java.awt.event package. The Glyphish class implements

each of the Input event listener interfaces: MouseListener, MouseMotionListener, and

KeyListener, all of the package java.awt.event. They do so in a uniform way. For each

method in the listener interface a Glyphish instance has a Closure object associated with

it. For example, in the case of the

public void mouseClicked(java.awt.event.MouseEvent e);

method of the MouseListener class, the Glyphish class has the field

private glyphics.scheme.Closure mouseClickedAction;

Calling the

mouseClicked(java.awt.event.MouseEvent e)

method would result in the clickedAction closure being applied:

clickedAction.applyClosure(this, e);

where the this pointer is of the Glyphish instance that is responding to the MouseEvent

instance e of the package java.awt.event.

Positioning, moving, and animating Glyphish instances is done by applying affine

transformations (e.g. translating, rotating, shearing, and scaling) to them.

Finally, the two classes glyphics.IOPFrame and glyphics.IOPView together imple-

ment the top-level window for glyphics IOP applications.

CHAPTER 4. A COMPLETE JLAMBDA PROGRAM 25

4.2 Clicker Table of Contents

To aid navigation of the clicker source code, we provide the following representation of

its lexical structure.

(let ((h ...)

(w ...)

(black ...)

(yellow ...)

(stroke ...)

(ellipse ...)

(view ...)

(frame ...)

(mkNode

(lambda (...)

(let ((node ...)

(pressed ...)

(released ...)

(dragged ...)

(clicked ...)

(trans ...))

(seq ... (invoke ...) ...))))

(clickedV ...))

(seq ...))

4.3 Code Listing for clicker

The clicker program begins by creating the main window object; it defines bindings

for some Java primitive types, fields, and objects, which are used to specify the initial

properties of the node object, and the glyphics.IOPFrame object, which is the program’s

main window.

(let ((h (int 50))

(w (int 70))

(black java.awt.Color.black)

CHAPTER 4. A COMPLETE JLAMBDA PROGRAM 26

(yellow java.awt.Color.yellow)

(stroke (object ("java.awt.BasicStroke" (float 2.5))))

(ellipse (object ("java.awt.geom.Ellipse2D$Double"

(int 0) (int 0) w h)))

(view (object ("glyphics.IOPView"

(boolean true) (boolean true))))

(frame (object ("glyphics.IOPFrame" "Node Example" view)))

Note that the use of these bindings relies on a particular semantics of JLambda’s let

expression: that each binding incrementally augments the lexical environment.

The next code section defines a closure which, when invoked, constructs a node object.

(mkNode

(lambda (xPos yPos)

(let ((node (let ((temp (object ("glyphics.Glyph" ellipse black yellow))))

(seq (invoke temp "setStroke" stroke)

temp)))

In creating the node, the closure uses several bindings from the previous section to

specify initial properties, such as colour, of the node.

The mkNode closure also creates several closures for each of the mouse click events to

which the node responds, and binds them to the variables pressed, released, dragged,

and clicked. Later in the program, these closures will be registered as event handlers for

the newly-created node.

The next section of the program contains the definition of each of these closures:

(pressed (lambda (self event)

(seq

(setAttr self

"pointF"

(object ("java.awt.geom.Point2D$Double"

(invoke event "getX")

(invoke event "getY"))))

(setAttr self "draggedF" (boolean true)))))

(released (lambda (self event)

CHAPTER 4. A COMPLETE JLAMBDA PROGRAM 27

(setAttr self "draggedF" (boolean false))))

(dragged (lambda (self event)

(if (getAttr self "draggedF")

(let ((pnt (getAttr self "pointF"))

(eX (invoke event "getX"))

(eY (invoke event "getY"))

(a (let ((temp (object "java.awt.geom.AffineTransform")))

(seq

(invoke temp

"translate"

(- eX (invoke pnt "getX"))

(- eY (invoke pnt "getY")))

temp))))

(seq (invoke self "transform" a)

(invoke pnt

"setLocation"

(invoke event "getX")

(invoke event "getY"))

(invoke view "repaint"))))))

(clicked (lambda (self event)

(if (invoke event "isShiftDown")

(let ((chooser (object ("javax.swing.JColorChooser")))

(color (invoke chooser

"showDialog"

frame

"Color Chooser"

(invoke self "getFill"))))

(seq (if (!= color (object null))

(invoke self "setFill" color))

(invoke view "repaint"))))))

When an event handler closure is invoked it receives two arguments: the object receiving

the event, and the event object itself. The closure uses information stored in the event

CHAPTER 4. A COMPLETE JLAMBDA PROGRAM 28

object to manipulate the receiving object.

Each of the above closures manipulate the node object in ways that correspond to the

type of event the node object received. For example, the clicked closure checks whether

the shift key is depressed; if the key is depressed, the closure displays a dialogue box, and

changes the colour of the node to the selected colour.

Next, a java.awt.geom.AffineTransform object is defined, which will later be used

to provide translation of the node object in response to a mouse drag event.

(trans (let ((temp (object ("java.awt.geom.AffineTransform"))))

(seq (invoke temp "translate" xPos yPos)

temp))))

The event handling closures that have been created and bound to variables must now

be registered as event handlers for the node object. The following code sequence invokes

the setMouseAction method of the node object to register closures for each of the different

types of mouse event to which the node responds.

(seq

(invoke node

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_PRESSED

pressed)

(invoke node

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_RELEASED

released)

(invoke node

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_CLICKED

clicked)

(invoke node

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_DRAGGED

dragged)

(invoke view "add" node trans)))))

CHAPTER 4. A COMPLETE JLAMBDA PROGRAM 29

The final invoke expression in the preceding code sequence simply adds the translated

node to the view object.

The program now defines a closure that creates a new node in response to a mouse

click event.

(clickedV (lambda (self event)

(if (not (invoke event "isShiftDown"))

(seq

(apply mkNode

(- (invoke event "getX") (/ w (int 2)))

(- (invoke event "getY") (/ h (int 2))))

(invoke view "repaint"))))))

The clickedV closure receives the window object and event object as arguments, and

uses the event object to determine the position at which to create the new node. clickedV

creates a new node object by calling the mkNode closure defined previously.

Since a mouse click event creates a new node, it must be received by the window object,

and not a node object. Consequently, the closure that handles mouse click events is not

created within the body of mkNode, unlike the previously defined event handler closures.

The remaining section of code simply registers the node-creation event handler, clickedV,

with the window object, and displays an initial node.

(seq

(invoke view

"setMouseAction"

java.awt.event.MouseEvent.MOUSE_CLICKED

clickedV)

(apply mkNode (* w (int 3)) (* h (int 3)))

(invoke view "repaint")))

After the program has been evaluated the interpreter exits, and Java’s AWT thread

continues running to listen for window events. Closures that are invoked in response to

events are interpreted in this second thread.

The code listing for the clicker program demonstrates the power and simplicity of

the interface provided the JLambda language to Java’s language facilities. Features such as

CHAPTER 4. A COMPLETE JLAMBDA PROGRAM 30

closures and lexical scoping make construction of event-driven graphical programs, such as

clicker, particularly straight-forward.

Chapter 5

A Recursive Interpreter for JLambda

We present in this chapter our first-pass design of an interpreter for the JLambda language.

The goal of the design is merely a simple working interpreter; we are not yet concerned

with the interpreter’s performance. Our design is a simple recursive evaluator similar to

that commonly presented in undergraduate courses on programming language implemen-

tation [1]. We explain in the following sections the major components of the design—the

parser, the environments, and the evaluation model. Although this design has the virtue

of a simple implementation, it has a major flaw when the implementation language is Java.

We detail this flaw in the final section.

5.1 The List Class

We begin the explanation of the interpreter’s operation by presenting the List class. The

List class is used heavily by the interpreter—expressions and environments are represented

using Lists. Since there will be references to the Lisp class throughout the rest of this

chapter, we explain here operations it provides.

In keeping with Lisp tradition, we call the first item in a list the car of the list; the rest

of the list—that is, the part of the list that follows the car—is called the cdr of the list.

The List class is an implementation of the Lisp list, with one anomaly: our implemen-

tation of the empty List is actually a cons cell with the empty flag set. We follow Lisp

tradition and denote the head and tail of a list by car and cdr, respectively. The elements

of a List can be any Java Object. The List class provides all of the expected operations,

such as list construction, car andcdr accessors, and so on.

31

CHAPTER 5. A RECURSIVE INTERPRETER FOR JLAMBDA 32

The following List constructors are provided to create new empty lists

public List();

or new lists with the specified car and cdr.

public List(Object car, List cdr);

The test for whether a List is empty is provided by the isEmpty method.

public boolean isEmpty();

The List class provides static convenience methods for the creation of zero-element,

singleton, two-element, and three-element Lists.

public static List list();

public static List list(Object o);

public static List list(Object o1, Object o2);

public static List list(Object o1, Object o2, Object o3);

The accessor operations, car and cdr have the usual behaviour.

public final Object car();

public final List cdr();

The List class also provides the convenience accessor methods caar, cadr, cdar, cddr,

and caddr, for performing the composition of car and cdr operations. The names consist

of a c, followed by a series of a’s or d’s, and finally an r. The series of a’s or d’s is chosen

to identify the series of car and cdr operations that is performed by the method. The

order in which the a’s and d’s appear is the inverse of the order in which the corresponding

operations are performed.

For selecting an arbitrary element of a list, the List class is equipped with the operation

nth.

public Object nth(int n);

Finally, the size of a List object can be obtained by using the size operation.

public int size();

In addition to the methods already presented, the List class contains several methods

related to parsing of interpreter input. We present those methods in Section 5.2.

CHAPTER 5. A RECURSIVE INTERPRETER FOR JLAMBDA 33

5.2 The Parser

The first stage of evaluation of a JLambda expression is the parsing of the input. The input

may be read from a file or taken from the interactive command interpreter. If the input is

read from a file, all of the forms contained in the file are read until the end-of-file marker

is encountered. If the input is taken from the command interpreter, only a single form is

read.

The parser consumes the input and returns, for each form present in the input, either

a single token or an S-expression whose atoms are tokens. The tokenising of the input is

handled by the Java StringTokenizer class. A token returned by the parser is simply a

Java String.

The parser merely parses S-expressions (as a character stream) and returns S-expressions;

it does not compile input into an abstract expression representation.

5.3 Environments

We use two kinds of environments in the interpreter, a global environment and a lexical

environment. A global environment is responsible for maintaining the global definitions

introduced by the define form. We implement the global environment as a hash table

that maps name to values.

Our design for lexical environments is simple: a lexical environment is a list of variable-

value pairs, and environment lookups use linear search.

5.4 The Evaluation Model

The evaluation model used by the interpreter is a simple recursive evaluation procedure.

Evaluation is structured as a case analysis of the syntactic type of the expression to be

evaluated, and begins when a form is received from the parser. The evaluator determines

the type of the form by examining the token at the head of the form, which we call the

form ID. The evaluator then dispatches on the form ID to a method responsible for the

evaluation of forms of the type specified by the form ID. This process is then repeated

recursively for each subexpression.

The following two rules describe the essence of the recursive evaluation model:

CHAPTER 5. A RECURSIVE INTERPRETER FOR JLAMBDA 34

1. To evaluate closure application, evaluate the closure subexpression and then apply

the value of the closure subexpression to the values of the argument subexpressions.

2. To apply a closure to a set of arguments, evaluate the body of the closure in a new

environment. To construct this environment, extend the environment part of the

closure with bindings for the formal parameters to the arguments.

An example will serve to elucidate this process. Consider the evaluation of the following

apply expression:

(apply (lambda (x) (+ x x)) (int 4))

The core of the evaluator is a set of overloaded static evaluate methods of the Evaluate

class. The entry point of the evaluator is the following evaluate method, which receives

from the parser a List that represents the parsed expression:

public static Object evaluate(List expr) {

return evaluate(expr, new Environment());

}

The evaluate method simply passes the expression it receives to an evaluate method

that takes an additional argument, the environment in which the expression is to be eval-

uated. Since the evaluate method defined above receives only top-level expressions, it

passes on an empty environment.

The following is the definition of the second evaluate method. We include only the

parts that are relevant to the evaluation of apply expressions:

public static Object evaluate(Object form, Environment env) {

...

if (form instanceof List) {

String tag = form.car();

...

if (tag.equals("apply")) {

return evaluateApply(form.cdr(), env);

}

...

}

}

CHAPTER 5. A RECURSIVE INTERPRETER FOR JLAMBDA 35

This evaluate method handles the evaluation of all expressions, and is structured as

a case analysis of the syntactic type of the expression to be evaluated. In our exam-

ple, evaluate dispatches on the expression tag ("apply") to the evaluateApply method,

which is responsible for evaluating apply expressions. The evaluate method passes to

the evaluateApply method the body of the apply expression—the lambda expression and

arguments—and also passes along the environment it received.

Here is the definition of evaluateApply:

public static Object evaluateApply(List body, Environment env)

throws EvaluateError {

int len = body.size();

if (len == 0) {

throw new EvaluateError("body wrong length: " + len);

}

Object funObj = evaluate(body.car(), env);

if (!(funObj instanceof Closure)) {

throw new EvaluateError("function not a closure" + funObj);

}

Closure closure = (Closure) funObj;

List closureParams = closure.getParams();

Object closureBody = closure.getBody();

Environment closureEnv = closure.getEnv();

List args = body.cdr();

if (parameters.size() != args.size()) {

throw new EvaluateError("closure params and args differ"

+ " in length");

}

Environment envApply = new Environment(closureParams,

evaluateList(args, env),

closureEnv);

return evaluate(closureBody, envApply);

CHAPTER 5. A RECURSIVE INTERPRETER FOR JLAMBDA 36

}

The evaluateApply method makes a recursive call to evaluate to evaluate the lambda

expression, and is returned a Closure. evaluateApply then calls evaluateList to evalu-

ate the application arguments. evaluateList makes recursive calls to evaluate to eval-

uate each expression in the list it receives. In this case, evaluateList returns a List

containing the argument value, 4.

Finally, the body of the closure is evaluated—again by recursively calling evaluate—

in an environment obtained by extending the environment stored in the closure with a

binding for the formal parameter and argument value. The value returned by this call to

evaluate is the value of the complete apply expression; this value is the return value of

the evaluator.

This example highlights the key to the operation of the interpreter: the evaluation

of the subexpressions of the apply expression—the lambda expression and the argument

expressions—as well as the evaluation of the apply expression itself, is carried out by

recursive calls to evaluate.

Although the interpreter correctly evaluates expressions such as our example, the re-

cursive nature of its evaluation model, combined with the lack of proper tail recursion [5]

in the Java virtual machine, causes it to fail on certain other kinds of expressions.

5.5 The Flaw in the Design

We explain the problem with the current design of the interpreter with another example,

a program that implements an infinite loop. Clearly, this is not a realistic program; it

does however providen a simple demonstration of the problem with the current interpreter

implementation.

(seq

(define inf-loop () (apply inf-loop))

(apply inf-loop))

We would of course like our interpreter to evaluate this expression—the interpreter

should execute an infinite loop. Instead, when we evaluate the above expression we discover

that the interpreter fails with a stack overflow error.

CHAPTER 5. A RECURSIVE INTERPRETER FOR JLAMBDA 37

To see why this happens, we again trace the evaluation of the expression. The inter-

preter evaluates the apply expression by making a recursive call to evaluate, and passes

to evaluate the body of the apply expression, which is another identical apply expression.

The interpreter repeats this process indefinitely. Since the Java virtual machine handles

method invocation by pushing a stack frame, the stack eventually overflows.

This example demonstrates that the interpreter is unable to handle arbitrarily long

recursions, and therefore cannot evaluate many real-world programs, such as those that

compute long lists.

Our first-pass design for the interpreter is flawed because it uses a recursive process,

which eventually causes a stack overflow error. In the next chapter we show how this flaw

can be removed by changing the design of the interpreter to use an iterative process.

Chapter 6

A Register Machine Interpreter for

JLambda

We saw in Chapter 5 that the interpreter causes a stack overflow error when it attempts

to evaluate certain expressions. The source of this problem is that, because it inherits the

control structure of the underlying Java system, the interpreter executes as a recursive

process. In this chapter we demonstrate the changes to the interpreter design necessary

to implement the interpreter as a register machine. In the new design, the procedure-

calling and argument-passing mechanisms used in the evaluation process can be described

in terms of operations on registers. We thus obtain an explicit-control evaluator, which

exhibits iterative execution behaviour.

The transformation of the recursive interpreter into one with iterative behaviour in-

volves two steps. First, we ensure all recursive calls are tail calls. We achieve this by

transforming the interpreter into continuation passing style [12]. Such a transformation

would be sufficient to achieve an interpreter with iterative execution if our interpreter was

implemented in a properly tail recursive language. In properly tail recursive languages

tail recursion is guaranteed to be equivalent to iteration. Since our implementation lan-

guage is Java—which is not tail recursive [5]—we must perform a further step to manually

transform tail recursion into iteration.

The second step, therefore, is the transformation of the interpreter from a continua-

tion passing style into a register-based imperative style. This transformation is based on

the following observation: if a set of methods call each other only by tail calls, we can

first rewrite the calls to use variable assignment instead of argument-passing, and we can

38

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 39

then replace method calls with jumps. The register machine transformation consists of

systematically performing such rewrites.

In this thesis we do not discuss the continuation passing style transformation or the

register machine transformation. Detailed discussions of both transformations can be found

in Matthias Felleisen’s Ph.D. dissertation[6].

Once these two steps are complete we will have arrived at an interpreter with iterative

execution behaviour. The interpreter resulting from the first step—a continuation passing

style interpreter—will not be presented; we focus in this chapter on the interpreter obtained

by performing both steps. This register machine interpreter can evaluate any JLambda

expression without overflowing the Java virtual machine stack.

6.1 The Register Machine

Our JLambda evaluator register machine includes four registers: exp, val, env, and k. Exp

is used to hold the expression to be evaluated, and env contains the environment in which

the evaluation is to be performed. At the end of an evaluation, val contains the value

obtained by evaluating the expression in the designated environment. The k register is

used to implement recursion, and stores the continuation to be invoked upon completion

of an evaluation.

The registers form part of the State class, and are implemented as fields of State.

class State {

int mode;

Object exp;

Environment env;

Object val;

Continuation k;

...

}

The State class encapsulates the state of the register machine evaluator. The mode field

represents the current mode of operation of the evaluator. There are four possible modes

of operation: EVAL, CONTINUE, RETURN, and DONE. The evaluator is in EVAL mode when it

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 40

begins evaluation of the expression in the exp register. The CONTINUE mode corresponds

to the case when an expression is partially evaluated and control has been transferred

to a continuation to complete the evaluation. The evaluator is in RETURN mode when

evaluation of the expression contained in the exp register is complete, and its value has

been placed in the val register. The DONE mode signifies that no more expressions remain

to be evaluated; the value in the val register is returned by the interpreter as the value of

the overall expression.

The core of the register machine evaluator is the step method of the State class.

When the interpreter executes step it performs a single step of the evaluation process.

The interpreter evaluates a top-level expression by first initialising the State object and

then entering a loop, in which it repeatedly invokes the step method until the State

object’s mode of operation becomes DONE. Upon termination of the loop, the interpreter

returns the contents of the val register as the value of the expression.

public static Object evaluate(Object form, Environment env) {

State state = new State();

state.init(form, env);

while (state.mode != DONE) {

state.step();

}

return state.val;

}

The step method of the State class co-ordinates expression evaluation based on the

evaluator’s current operation mode. The EVAL case corresponds to the evaluate method

of the recursive evaluator described in Chapter 5. When the evaluator is in the EVAL mode

it evaluates the expression specified by exp in the environment specified by env. When

the evaluation is complete, the interpreter will be in the RETURN mode; it will invoke the

continuation stored in k, and the val register will hold the value of the current expression.

As with the recursive evaluate, the structure of the EVAL case of the step method is a

case analysis on the syntactic type of the expression to be evaluated.

public void step() {

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 41

switch (mode) {

case EVAL:

...

String formId = exp.car();

if (formId.equals("=")) {

...

} else if (formId.equals("and") {

...

} else if (formId.equals("apply") {

...

} else if ...

...

break;

case CONTINUE:

...

case RETURN:

k.ret(this);

break;

}

}

6.2 Continuations

We represent continuations by Java classes. A continuation can be viewed as corresponding

to the stack in an executing program. With this in mind, we implement a chain of con-

tinuations as a kind of linked list: each continuation is an object that contains a reference

to another continuation object, with the chain terminated by a special top-level continua-

tion. The Continuation class is an abstract class that is the superclass of all continuation

objects. For each of the different kinds of expressions understood by the interpreter, we

define a corresponding subclass of Continuation. We also define a continuation subclass,

TopCont, that will terminate the chain.

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 42

We define continuation classes for all JLambda expression types except variables, primi-

tive data expressions, quotations, and lambda expressions, and these classes are responsible

for co-ordinating the evaluation of that expression type. All of the continuation classes

extend the abstract Continuation class. Continuation classes contain six fields: formId,

args, vals, n, env, and k. The formId field contains the identification tag of the expres-

sion currently being evaluated. The args and vals fields contain the unevaluated and

evaluated arguments, respectively. The number of arguments that have been evaluated so

far is stored in the n field. The env field contains the environment in which the current

expression is being evaluated. The k field contains the continuation to be invoked once

evaluation of the current expression is complete.

Continuation classes implement three methods: init, cont, and ret. The init method

initialises the fields of the Continuation. The cont method executes the next step of

evaluation of an expression; it is called when the Continuation is initially invoked, and also

after a subexpression has been evaluated. The ret method is called when the evaluation

of the current expression is complete; it updates the operation mode of State and invokes

the Continuation stored in k.

abstract class Continuation {

String formId;

List args;

ArrayList vals;

int n;

Environment env;

Continuation k;

public void init(String f,

List a,

Environment e,

Continuation aK) {

formId = f;

args = a;

vals = new ArrayList();

n = 0;

env = e;

k = aK;

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 43

}

abstract void cont(State s);

abstract void ret(State s);

}

The chain of continuations is terminated by a top level continuation, whose only purpose

is to terminate the evaluation loop, which it achieves by setting the interpreter’s operation

mode to DONE. We implement this continuation with the TopCont class.

class TopCont extends Continuation {

public TopCont() {

}

public void cont(State state) {

throw new UnsupportedOperationException();

}

public void ret(State state) {

state.tag = DONE;

}

}

The TopCont continuation is created when evaluation of a top level expression begins,

during the initialisation of the State object.

class State {

...

public void init(Object x, Environment n) {

exp = x;

env = n;

k = new TopCont();

mode = EVAL;

}

}

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 44

6.3 The Evaluation Process

Variables, primitive data expressions, quotations, and lambda expressions have no subex-

pressions to be evaluated. For these, the evaluator simply places the appropriate value in

the val register and continues execution by invoking the ret method of the continuation

stored in the k register. Evaluation of such expressions is performed by the following parts

of the step method of the State class:

public void step() {

switch (mode) {

case EVAL:

if (exp instanceof String) {

val = lookupVariable(exp, env);

mode = RETURN;

break;

}

if (!(exp instanceof List)) {

val = exp;

mode = RETURN;

break;

}

List form = (List) exp;

if (form.size() < 2) {

throw new EvaluateError("list too short -- " + form);

}

Object carObj = form.car();

if (!(carObj instanceof String)) {

throw new EvaluateError("form tag not a String -- "

+ carObj);

}

String formId = (String) carObj;

if (formId.length() < 1) {

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 45

throw new EvaluateError("formId too short -- " + formId);

}

List body = form.cdr();

...

if (formId.equals("boolean")) {

val = Boolean.valueOf(body.car());

mode = RETURN;

} else if (formId.equals("byte")) {

...

}

...

} else if (formId.equals("lambda")) {

int len = body.size();

if (len != 2) {

throw new EvaluateError("body wrong length -- "

+ len);

}

Object paramsObj = body.car();

if (!(paramsObj instanceof List)) {

throw new EvaluateError("params not a List -- "

+ paramsObj);

}

val = new Closure((List) paramsObj, body.cadr(), env);

mode = RETURN;

}

...

case RETURN:

k.ret(this);

break;

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 46

}

}

6.4 An Example of Evaluation

To illustrate the evaluation process for more complicated expressions we again use an apply

expression as an example.

(apply (lambda (x) (+ x x)) (int 4))

The operator of an apply expression is a subexpression whose value should be a closure,

and the operands are subexpressions whose values are the arguments to which the closure

should be applied. We saw in Chapter 5 that the recursive evaluator handles apply ex-

pressions by calling itself recursively to evaluate each subexpression, and then calling itself

to evaluate the body of the closure in an extended environment. The register machine

evaluator does essentially the same thing, except that the recursive calls are implemented

by invocations of Continuations. The invoked Continuations save the registers that will

later be restored when the recursive call returns.

Evaluation begins at the evaluate method of the Evaluate class, as it did in the

recursive evaluator of Chapter 5. This time, however, evaluate method simply steps the

evaluation process by repeatedly invoking the step method of State until the mode of

State becomes DONE. We first initialise the registers of the State object: we store the

apply expression in the exp register; we store the empty environment (which is received

as an argument) in the env register; and we create a TopCont continuation and store it in

the k register. We then set the operation mode to EVAL.

We begin the evaluation of an apply expression by evaluating the operator to produce a

closure, which will later be applied to the evaluated operands. This task is handled by the

ApplyCont continuation. the first part of evaluation, therefore, is to create an ApplyCont

continuation and store it in the k register. We pass to the ApplyCont constructor the

current contents of the k register, which in this case is a TopCont continuation. Once

the ApplyCont continuation has evaluated the apply expression, it will invoke the saved

TopCont continuation to terminate the evaluation process.

The env register already contains the correct environment in which to evaluate the

operator. We save env, however, because we will need it later to evaluate the operands.

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 47

For convenience, we also save, separately, the form identifier and the form body. The

mode of the State object is then set to CONTINUE, and the cont method of the ApplyCont

continuation is invoked.

public void step() {

switch (mode) {

case EVAL:

...

if (formId.equals("apply")) {

k = new ApplyCont(formId, body, env, k);

mode = CONTINUE;

}

...

break;

case CONTINUE:

k.cont(this);

break;

...

}

}

To evaluate the operator—the lambda expression—we move it to the exp register and

set the mode of State to EVAL.

class ApplyCont extends Continuation {

public ApplyCont(String exp,

List args,

Environment env,

Continuation k) {

init(exp, args, env, k);

}

public void cont(State state) {

state.exp = args.nth(n);

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 48

state.mode = EVAL;

}

...

}

When the cont method returns, the step method is again invoked with the exp register

now containing the lambda expression. The lambda expression is evaluated according to

the process already described. The corresponding closure is then created and placed in the

val register, and the mode is set to RETURN. The k register has not been changed during

these operations, and still contains the ApplyCont continuation, since we want execution

to return there to continue the evaluation of the remaining subexpressions of the apply

expression. The step method invokes the ret method of ApplyCont.

Upon return from the evaluation of the operator subexpression, we proceed to evaluate

the operands of the apply expression, and to accumulate the resulting arguments in a list,

which is held in the args field of the ApplyCont continuation. If any operands still remain

to be evaluated, we again set the mode to CONTINUE and repeat the loop, evaluating each

operand in turn, accumulating its value in the vals field.

Each cycle of the argument-evaluation loop evaluates a single operand from the list

stored in the args field of the ApplyCont object, and accumulates the result into the vals

field. To evaluate an operand, we place it in the exp register and set the mode to EVAL,

after setting k to the currently-executing ApplyCont object, so that execution will resume

with the argument-accumulation phase.

We add the closure stored in the val register to vals, the list of evaluated arguments,

and increment n, the number of evaluated arguments. Since the second argument (the

operand, (int 4)) is still to be evaluated, we set the mode to CONTINUE, and then return.

class ApplyCont extends Continuation {

...

public void ret(State state) {

vals.add(state.val);

n++;

if (n < args.size()) {

state.mode = CONTINUE;

} else {

...

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 49

}

}

}

Evaluation of primitive data expressions such as (int 4) requires simply creating a

corresponding primitive data object and storing it in the val register. The mode is set to

RETURN, and the step method again invokes the ret method of the ApplyCont continuation

object.

The ret method of ApplyCont stores the newly created primitive data object in the

vals list, and increments n.

Once all of the operands have been evaluated, we perform the closure application. By

this time the vals field of the ApplyCont object contains the closure to be applied, along

with the evaluated arguments to which it must be applied. The k field contains the saved

continuation which tells where to return with the result of the application. When the

application is complete, the evaluator invokes the ret method of the saved continuation,

with the result of the application in the val register.

class ApplyCont extends Continuation {

...

public void ret(State state) throws EvaluateError {

n++;

if (n == 1 && !(state.val instanceof Closure)) {

throw new EvaluateError("function not a closure -- "

+ state.val);

}

vals.add(state.val);

if (n < args.size()) {

...

} else {

Closure closure = (closure) state.val;

List parameters = closure.getParams();

Object body = closure.getBody();

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 50

Environment closureEnv = closure.getEnv();

Environment envApply = new Environment(parameters,

vals.cdr(),

closureEnv);

state.exp = body;

state.env = envApply;

state.k = k;

state.mode = EVAL;

}

}

}

To apply a closure, we proceed just as with the recursive evaluation model of Chap-

ter 5. We extend the environment contained in the closure with bindings for the closure’s

parameters and arguments; we then evaluate in this extended environment the expression

that forms the body of the closure. Importantly, the continuation of the evaluation of

the closure body is now the continuation of the apply expression—this is the key to the

implementation of tail recursion.

The ret method of the ApplyCont class sets the registers in preparation for the evalu-

ation of the closure body in the augmented environment, and control returns to the step

method. The exp register contains the body of the closure, (+ x x); the env register

contains the environment that was stored in the closure, augmented with the binding for

the variable x; and the k register now contains the TopCont continuation object.

The interpreter repeats this procedure to evaluate the (+ x x) expression, and the

result is stored in the val register. The ret method of TopCont is now invoked, which sets

the operation mode to DONE. The evaluation then terminates, and the sum is returned by

the interpreter as the value of the complete apply expression.

6.5 Evaluation of let Expressions

The example presented in Section 6.4 demonstrates how evaluation proceeds for expressions

in which each subexpression must be evaluated. However, to evaluate expressions such as

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 51

if, let, and do we cannot simply evaluate all of their subexpressions. Evaluation of these

expressions is more complicated. In this section we explain the process of evaluation of a

let expression.

As usual, the evaluation process begins with the creation of an appropriate continuation

object, in this case a LetCont object. The LetCont class uses the args field to store the list

of bindings and the vals field to store the value of each binding expression; the LetCont

class therefore defines an extra field, body, that stores the body of the let expression.

This is the LetCont constructor:

class LetCont extends Continuation {

private Object body;

public LetCont(String aFormId,

List someArgs,

Environment anEnv,

Continuation aK) {

init(aFormId, (List) someArgs.car(), anEnv, aK);

body = someArgs.cadr();

}

}

Once the LetCont object is created, State.step invokes the LetCont object’s cont

method, which initiates evaluation of the binding expressions. cont evaluates each binding

expression in the binding list by placing it in the exp register, then setting the evaluator

mode to EVAL, and finally returning. The k register still stores the currently-executing

LetCont object, and is left unchanged so that the step method calls LetCont’s ret method,

which retrieves the value of the binding expression and organises for the next binding

expression to be evaluated.

void cont(State state) throws EvaluateError {

if (n < args.size()) {

Object binding = args.nth(n);

if (!(binding instanceof List)) {

throw new EvaluateError("let: bindings not an alist -- "

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 52

+ args);

}

int len = ((List) binding).size();

if (len != 2) {

throw new EvaluateError("let: binding not a pair -- "

+ binding);

}

Object key = ((List) binding).car();

if (!(key instanceof String)) {

throw new EvaluateError("let: key not a String -- " + key);

}

state.exp = ((List) binding).cadr();

} else {

state.exp = body;

state.k = k;

}

state.tag = State.EVAL;

state.env = env;

}

After each binding expression is evaluated the ret method of LetCont is called. The

ret method adds the value of the binding expression, which is stored in the val register,

to the args field. It then updates the environment stored in the env field with a binding

from value it has just received to the corresponding variable, which is retrieved from the

list of bindings stored in the args field. The evaluator mode is then set to CONTINUE so

that the cont method is called by State.step, and continues the evaluation of the let

expression.

void ret(State state) throws EvaluateError {

String var = (String) ((List) args.nth(n)).car();

env = env.extend(var, state.val);

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 53

n++;

state.tag = State.CONTINUE;

}

Finally, when all of the binding expressions have been evaluated and the environment

stored in the env field has been extended with appropriate bindings, the body of the let

expression is vevaluated. The cont method places in the exp register the expression stored

in the body field; sets the k register to the continuation of the let expression; sets the

evaluator mode to CONTINUE; and then returns.

6.6 Execution Behaviour of the Register Machine In-

terpreter

To show that the implementation of the interpreter as a register machine has iterative

execution behaviour, we trace the execution of the infinite loop expression of Chapter 5.

We reproduce here the code for the infinite loop:

(seq

(define inf-loop () (apply inf-loop))

(apply inf-loop))

Evaluation begins with the following section of the State class’s step method. step

creates a SeqCont continuation object, and invokes its cont method.

public void step() {

switch (mode) {

case EVAL:

...

if (formId.equals("seq")) {

k = new SeqCont(formId, body, env, k);

mode = CONTINUE;

}

...

break;

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 54

case CONTINUE:

k.cont(this);

break;

...

}

}

The cont method of SeqCont stores the define expression in the exp register, and sets

the operation mode of the State object to EVAL.

class SeqCont extends Continuation {

...

public void cont(State state) {

state.exp = args.nth(n);

state.env = env;

state.mode = EVAL;

}

}

Execution now returns to step, which sets up evaluation of the define expression. A

DefineCont continuation is created and its cont method invoked.

public void step() {

switch (mode) {

case EVAL:

...

if (formId.equals("define")) {

k = new DefineCont(formId, body, env, k);

mode = CONTINUE;

}

...

break;

case CONTINUE:

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 55

k.cont(this);

break;

...

}

}

The DefineCont continuation object evaluates define expressions by first checking

whether the value being defined is a simple value or a closure. It does this by checking

the number of arguments in the define expression; if there are 3 arguments, it evaluates

the lambda expression in the current environment, and adds the definition to the global

environment. The defined name is placed in the val register, and returned as the value of

the define expression. The saved continuation object, (a SeqCont object) is placed in the

k register. Finally, the operation mode is set to RETURN.

class DefineCont extends Continuation {

...

public void cont(State state) {

Object name = args.car();

if (args.size() == 2) {

...

} else {

Closure c = Evaluate.evaluateLambda(args.cdr(), env);

Evaluate.addDefinition(name, c);

state.val = name;

state.k = k;

state.mode = RETURN;

}

}

...

}

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 56

The step method then invokes the ret method of the SeqCont object.

The ret method of the SeqCont object stores the contents of the val register—the

inf-loop variable—in its vals field. The second argument of the seq expression—the

apply expression—still remains to be evaluated; ret sets the operation mode to CONTINUE,

and execution returns to the step method. The k register is left unchanged; it still contains

the SeqCont continuation object.

class SeqCont extends Continuation {

...

public void ret(State state) {

n++;

vals.add(state.val);

if (n < args.size()) {

state.mode = CONTINUE;

} else {

...

}

}

}

Control now returns to step, which immediately invokes the cont method of SeqCont.

cont sets up the evaluation of the second argument of the seq expression, by first placing

the apply expression in the exp register, then placing the saved environment in the env

register, and finally setting the mode to EVAL.

The step method evaluates the apply expression by creating an ApplyCont continua-

tion and invoking its cont method.

The cont method of ApplyCont sets up the registers for evaluation of its first argument,

the variable inf-loop.

Execution returns to the step method, which evaluates the variable inf-loop. A

lookup of the global environment is performed, and the closure bound to inf-loop is

placed in the val register. step then sets the operation mode to RETURN, and invokes the

CHAPTER 6. A REGISTER MACHINE INTERPRETER FOR JLAMBDA 57

ret method of the continuation object stored in the k register, which is still an ApplyCont

object.

The cont method of the ApplyCont object applies the closure by evaluating the closure’s

body. Since the body of the closure is an apply expression identical to the one currently

being evaluated, the evaluator loops indefinitely.

Unlike with the recursive interpreter implementation, the execution of the infinite loop

does not cause continuous growth of the Java Virtual Machine stack. The operations

involved in execution of the loop are simply assignments to registers, and non-recursive

method calls. Consequently, we are now able to evaluate potentially infinitely-recursive

expressions using an iterative process.

The process of evaluation presented in this chapter is essentially while loop. Hence, the

execution of the interpreter no longer causes a growing Java control context, or continua-

tion.

Chapter 7

Interpreter Optimisations

In Chapter 6 we developed an implementation of an interpreter that can evaluate any

JLambda expression. The goal of that chapter was simply a working interpreter—no at-

tention was paid to the performance of the interpreter. In this chapter we shift our focus

to the interpreter’s performance. We present four changes to the implementation of the

interpreter; each change is an attempt to increase the interpreter’s execution speed. The

remainder of the chapter is an explanation of how we implement each of these potential

optimisations.

7.1 Interned Strings

The first optimisation we perform is the interning of certain strings used throughout the

implementation of the interpreter. As we explained in the Chapter 5, the form returned

by the parser is a list in which each element is a Java String or a list. The evaluator

determines the type of a form by examining the string at the head of the list—the form

ID. The evaluator then dispatches on the form ID to a method responsible for evaluating

forms of the specified type.

Our initial implementation of the interpreter examined form IDs by used the Java’s

String.equals method to determine string equality. The following code illustrates how

this was implemented in the interpreter:

class State {

...

String formId = exp.car();

58

CHAPTER 7. INTERPRETER OPTIMISATIONS 59

...

public void step() {

...

if (formId.equals("apply")) {

...

}

}

...

}

For expressions that may be evaluated more than once, such as closure bodies, the

current implementation of the evaluator performs a string comparison of its form IDs

every time it is evaluated. Since the form ID of a given form never changes, its repeated

comparison is unnecessarily expensive.

We would like to reduce this expense by taking advantage of the fact that form IDs

are constant for each expression. One way in which this can be done is by using Java’s

String.intern method. The intern method guarantees that when it is invoked on a

string, only one copy of that string will exist. If intern is called on a string that is equal

to another already-interned string, a reference to the existing string is returned. This

allows us to ensure that only one copy exists of the string that represents a form ID, which

in turn allows form ID strings to be tested for equality using the object equality operator,

==. Naturally, the object equality operator is faster than the String.equals method.

The introduction of interned strings to the interpreter implementation requires, in addi-

tion to the replacement of the String.equals method with the ‘==’ operator, the interning

of any string that the parser determines is in the head position of a form. We implement

this change by defining a new class, SymbolTable, that contains strings that represent all

of the form IDs. The strings are stored in a hash table so that the parser can determine

whether a given string is a valid form ID.

class SymbolTable {

public static final String AGET = "aget";

public static final String AND = "and";

...

public static final String SINVOKE = "sinvoke";

public static final String TIMES = "*";

CHAPTER 7. INTERPRETER OPTIMISATIONS 60

private static final HashMap FORMIDS = new HashMap();

public static void init() {

FORMIDS.put(AGET, null);

FORMIDS.put(AND, null);

...

FORMIDS.put(SINVOKE, null);

FORMIDS.put(TIMES, null);

}

public static boolean contains(String s) {

return FORMIDS.containsKey(s);

}

}

The following code reflects the relevant changes to the parser:

class List {

public static List parseCdr(Parser parser, ...) {

...

String tok = Parser.nextToken(parser);

if(tok.equals("(")){

...

} else if(tok.equals(")")){

...

} else {

Object exp = parseToken(tok);

if (exp instanceof String) {

String s = exp.toLowerCase();

if (SymbolTable.contains(s)) {

exp = s.intern();

}

}

...

CHAPTER 7. INTERPRETER OPTIMISATIONS 61

}

}

}

The changes to the evaluator necessary to take advantage of interned form ID strings

are shown below:

class State {

...

String formId = exp.car().toLowerCase();

...

public void step() {

switch(mode) {

case EVAL:

...

if (formId == SymbolTable.APPLY) {

...

}

}

...

}

...

}

Since the comparison of the strings that represent form IDs is a core operation of the

evaluator, we expect that interning such strings will increase the interpreter’s execution

speed.

7.2 Hash Table Dispatch

The interpreter obtained by applying the optimisation described in Section 7.1 , although

using a more efficient test for string equality, still uses a series of if-else comparisons when

dispatching on the form ID. We can perhaps achieve a further optimisation by replacing

the sequence of if-else statements by a more efficient form of dispatch.

One way to replace the if-else dispatch procedure is to hash the form IDs, and then

retrieve from a hash table the method responsible for handling the evaluation of forms

CHAPTER 7. INTERPRETER OPTIMISATIONS 62

of the type specified by the form ID. We implement this version of form ID dispatch by

defining, for each form type, a class that contains a single method, eval, for handling the

evaluation of forms of that type. The hash table is populated with a single instance of

each class during initialisation of the interpreter. When a form is evaluated, the interpreter

retrieves from the hash table the object corresponding to the that form, and invokes the

object’s eval method.

The following is the definition of the class responsible for handling the evaluation of

apply forms:

class LambdaFormHandler {

public Object eval(List body, Environment env) {

return Evaluate.evaluateLambda(body, env);

}

}

The interpreter creates an instance of each of these classes and stores them in the hash

table defined in the SymbolTable class:

final class SymbolTable {

public static final String AGET = "aget";

public static final String AND = "and";

...

public static final String SINVOKE = "sinvoke";

public static final String TIMES = "*";

private static final HashMap FORMIDS = new HashMap();

public static void init() {

FORMIDS.put(AGET, new AgetFormHandler());

FORMIDS.put(AND, new AndFormHandler());

...

FORMIDS.put(SINVOKE, new SinvokeFormHandler());

FORMIDS.put(TIMES, new TimesFormHandler());

}

public static boolean contains(String s) {

CHAPTER 7. INTERPRETER OPTIMISATIONS 63

return FORMIDS.containsKey(s);

}

public static FormHandler get(String formId) {

return (FormHandler) FORMIDS.get(formId);

}

}

The introduction to the interpreter of hash table dispatch requires only straight-forward

changes to the interpreter’s evaluation loop: the sequence of if-else statements is replaced

by a single hash table lookup to retrieve the object that knows how to evaluate the specified

form, followed by invocation of the retrieved object’s eval method.

class State {

...

String formId = exp.car();

...

public void step() {

switch(mode) {

case EVAL:

...

SymbolTable.get(formId)).eval(this);

break;

}

...

}

...

}

7.3 Continuation Pools

The transformation of the interpreter into continuation-passing style, as described in Chap-

ter 6, necessitated the introduction of a Continuation class for each form type. During

the evaluation of a given form, a Continuation object is constructed for the evaluation

of every sub-form of that form. Upon completion of the evaluation of each sub-form,

CHAPTER 7. INTERPRETER OPTIMISATIONS 64

its Continuation object is promptly discarded. Therefore, a consequence of the way

Continuation objects are used in expression evaluation is the creation and disposal of

many Continuation objects during execution of the interpreter.

Since the majority of the Continuation objects are short-lived, it may be more efficient

re-use them by maintaining object pools. The interpreter uses object pools in the following

way: when a continuation object for a particular form type is required, it can be obtained

from the pool of appropriate continuation objects; when the object is no longer required,

it is returned to the pool from which it was obtained.

Adding continuation pools to the interpreter is straight-forward. For each continuation

class we define a pool manager class, whose responsibility is to allocate and reclaim the

corresponding continuation objects. At startup, the pool manager creates an initial pool

of continuation objects; when it receives a request for an object it returns a reference to an

unused continuation object in the pool. If all objects in the pool are used when the pool

manager receives a request, the pool manager enlarges the pool, populating it with new

continuation objects; it then returns a reference to one of the newly-created objects.

The changes to the evaluator necessary to enable it to use continuation pools are

twofold. First, we must replace each statement in which a continuation object is cre-

ated with one that requests a continuation object from the appropriate continuation pool

manager. Second, we must locate each place in the program where a continuation object

“exits” (and is discarded), and insert there code to return the object to the pool for reuse.

With the addition of continuation pools to the interpreter implementation, we hope to

have reduced the cost of creating and disposing of continuation objects, by reusing them

as much as possible.

7.4 Replacing Variables with Lexical Addresses

The current implementation of lexical environments is a simply a list of bindings. In such

an implementation, lookup of lexical variables involves traversing the list of bindings, and

comparing the variable in each binding to the target variable. Although this implemen-

tation has the virtue of simplicity, it is inefficient: the time taken for variable lookup is

linear in the size of the program. In this section we describe an implementation of envi-

ronments that does not rely on search, but instead relies on the replacement of variables

in expressions with the variable’s lexical address.

CHAPTER 7. INTERPRETER OPTIMISATIONS 65

Because JLambda is lexically scoped, the environment in which an expression is eval-

uated will have a structure identical to the lexical structure of the program in which the

expression appears. The following expression serves as an example:

(let ((a (int 0))

(b (int 1)))

((lambda (w x y)

(let ((y (int 2))

(z (int 3)))

(+ x y b)))

(int 4) (int 5) (int 6)))

At the point when the interpreter evaluates the expression (+ x y b), the environment

has a structure represented by the following list of bindings:

y → 2, z → 3, w → 4, x → 5, y → 6, a → 0, b → 1

The structure of the environment during evaluation clearly mirrors the lexical structure

of the example program. Thus, it is possible to predict the location in the evaluation

environment of a particular variable simply by observing its location in the lexical structure

of the program. In the example program, the variable y in the expression (+ x y b) is

the first variable bound in the immediately enclosing lexical scope; its binding in the

environment is located in first position. Similarly, b is bound by the second binding in

an enclosing scope that is at distance 2 from the current scope; the binding for b in the

environment is located in seventh position.

The correlation of the position of a variable in the environment with its position in the

lexical structure of the program can be exploited to obtain a more efficient implementation

of environment operations. Since the position of a variable in the environment can be

determined statically, we can, prior to evaluation of an expression, replace each variable

by what we know will be its address in the environment. Then, during evaluation of the

expression, environment operations use these addresses to directly retrieve values from the

environment.

Once we have made it possible to directly access the environment by address, we would

like an implementation of environments that is optimised for such access. We therefore

implement environments as a stack of frames. Each frame represents a lexical scope, and

CHAPTER 7. INTERPRETER OPTIMISATIONS 66

stores the values of the variables introduced by that scope. (Note that there is no longer

any need to store the variables themselves.) The evaluator pushes a new frame onto the

stack whenever a new lexical scope is created (by a let expression, for example). Since

values will be accessed directly by environment address, the most efficient way to store

them within a frame is in a vector. We call this environment implementation a stack

frame environment.

Returning to the example program, when the interpreter evaluates the expression

(+ x y b) the structure of the stack frame environment is represented by the following

stack of frames:

[2 3] → [4 5 6] → [0 1]

In the example program, the variable y in the expression (+ x y b) is the first variable

bound in the immediately enclosing lexical scope; accordingly, it’s value, 2, is stored in the

first element of the first stack frame. Similarly, b is bound by the second binding in an

enclosing scope that is distance 2 from the current scope; the value of b, 1, is stored in the

second element of the third stack frame.

7.4.1 Stack Frame Environments

With environments implemented as stack frame environments, it is natural that a lexical

address should consist of two components: a frame number, which specifies how many

frames to pass over, and a slot number, which specifies how many values to pass over in

that frame. We implement lexical addresses with the class LexicalAddress.

class LexicalAddress {

private int frame;

private int slot;

public LexicalAddress(int f, int s) {

frame = f;

slot = s;

}

public int getFrame() {

CHAPTER 7. INTERPRETER OPTIMISATIONS 67

return frame;

}

public int getSlot() {

return slot;

}

}

Environment frames are implemented by the EnvFrame class. An environment frame is

a vector of values implemented as an array of Object. Primitive values are stored in the

array via their wrapper objects. The lookup method simply returns the value stored in

the vector at the position specified by the method argument.

class EnvFrame {

private Object[] vector;

public EnvFrame(Object[] v) {

vector = v;

}

public Object lookup(int slot) {

return vector[slot];

}

}

Finally, we change the Environment class to implement a list of EnvFrames. The lookup

operation takes a lexical address as an argument and returns the value at that address.

lookup locates the correct frame by skipping the number of frames specified by the frame

field of address, and uses the slot field of address to index into the frame.

class Environment extends List {

public Environment() {

super();

}

public Environment(Object[] vals, Environment cdr) {

CHAPTER 7. INTERPRETER OPTIMISATIONS 68

super(new EnvFrame(vals), cdr);

}

public Environment(EnvFrame frame, Environment cdr) {

this.car = frame;

this.cdr = cdr;

this.empty = false;

}

public Environment extend(Object[] vals) {

return new Environment(vals, this);

}

public Object lookup(LexicalAddress address) {

int frame = address.getFrame();

Environment ptr;

for (ptr = this; frame > 0; frame--) {

ptr = (Environment) ptr.cdr;

}

return ((EnvFrame) ptr.car).lookup(address.getSlot());

}

}

With stack frame environments implemented, we must add to the interpreter func-

tionality for replacing a variable in an expression with its lexical address. Since variable

replacements must be performed before the evaluation of an expression begins, we intro-

duce a new interpretation phase, the syntactic analysis phase, in which such operations

are performed.

7.4.2 Syntactic Analysis

In the syntactic analysis phase of interpretation, we replace each occurrence of a variable in

an expression with its lexical address. The syntactic analysis phase is implemented using

the analyse method of the Analyse class. The analyse method takes as an argument

CHAPTER 7. INTERPRETER OPTIMISATIONS 69

the form produced by the parsing phase, and returns a new form identical to the original,

except that each variable is replaced by its lexical address.

Analysis Environments

To determine the lexical address of each variable in a program, the analyse method must

keep track of lexical scope as it analyses each expression in the program. It does this by

using an environment, which we call an analysis environment, that represents the current

lexical scope. An analysis environment is similar in structure to an evaluation environment;

whereas an evaluation environment associates values to addresses, an analysis environment

associates addresses to variables. When a new lexical scope is created (by a let expression,

for example), a frame containing the newly introduced variables is pushed onto the stack

of frames implementing the analysis environment. Thus, the lexical address of a variable

in an expression is given by its address in the current analysis environment.

An analysis environment frame is implemented by the AnalysisEnvFrame class; the

variables in the frame are stored in a vector. The AnalysisEnvFrame class provides a

contains operation, for determining whether a frame contains a particular variable, and

a getSlot operation, for calculating the position within a frame of a given variable.

class AnalysisEnvFrame {

private String[] vector;

public AnalysisEnvFrame(String[] v) {

vector = v;

}

public boolean contains(String var) {

for (int slot = 0; slot < vector.length; slot++) {

if (var.equals(vector[slot])) {

return true;

}

}

return false;

}

CHAPTER 7. INTERPRETER OPTIMISATIONS 70

public int getSlot(String var) {

for (int slot = 0; slot < vector.length; slot++) {

if (var.equals(vector[slot])) {

return slot;

}

}

}

}

The analysis environment is implemented by the AnalysisEnv class. The most impor-

tant operation of the AnalysisEnv class is lookup, which, given a variable, returns the

address in the environment of that variable. If the variable is not present in the environ-

ment, null is returned.

class AnalysisEnv extends List {

public AnalysisEnv() {

super();

}

public AnalysisEnv(String[] vars, AnalysisEnv cdr) {

this(new AnalysisEnvFrame(vars), cdr);

}

public AnalysisEnv(AnalysisEnvFrame frame, AnalysisEnv cdr) {

this.car = frame;

this.cdr = cdr;

this.empty = false;

}

public AnalysisEnv extend(String[] vars) {

return new AnalysisEnv(vars, this);

}

public LexicalAddress lookup(String var) {

int frame = 0;

CHAPTER 7. INTERPRETER OPTIMISATIONS 71

int slot = 0;

AnalysisEnv cur = this;

while (!cur.isEmpty()) {

AnalysisEnvFrame f = (AnalysisEnvFrame) cur.car;

if (f.contains(var)) {

return new LexicalAddress(frame, f.getSlot(var));

}

cur = (AnalysisEnv) cur.cdr;

frame++;

}

return null;

}

}

The analyse Method

The analyse method receives a form from the parser, and constructs and returns a new

form, which is identical to the original, except that each variable has been replaced by

its lexical address. analyse is therefore implemented as a case analysis on the syntactic

structure of the form to be analysed. For each case, analyse calls itself recursively on each

subexpression; the new form is then assembled from the analysed subexpressions.

In the case where the expression is a string, analyse assumes the string denotes a lexical

variable and attempts to retrieve the variable’s address in the analysis environment. If the

variable is not found in the environment, the string must denote either a global variable,

a Java field, or an unbound variable. Since all of these possibilities are handled by the

evaluator, analyse simply returns the string unchanged.

class Analyse {

public static Object analyse(Object exp, AnalysisEnv env) {

if (exp instanceof String) {

LexicalAddress a = env.lookup((String) exp);

return (a != null ? a : exp);

CHAPTER 7. INTERPRETER OPTIMISATIONS 72

}

...

}

}

The analysis of + expressions provides an example of how slightly more complex expres-

sions are analysed. First, the two argument subexpressions are analysed; then the resulting

forms, along with the form ID, are combined and returned as the analysed + form.

class Analyse {

public static Object analyse(Object exp, AnalysisEnv env) {

...

List form = (List) exp;

Object formId = (String) form.car();

List body = form.cdr();

if (formId.equals("+") {

return new List(formId,

analyse(body.car(), env),

analyse(body.cadr(), env)),

}

...

}

}

The most interesting expressions are those that introduce new lexical scopes: the let

and lambda expressions. The analyse method processes these expressions by first extend-

ing the current analysis environment with a frame containing the variables being intro-

duced, and then analyses the body of the expression in the newly extended environment.

The following part of analyse shows how let expressions are analysed. Analysis begins

with the construction of a new list of bindings, in which each expression in the value position

is replaced with its analysed version. Following the analysis of each binding expression,

CHAPTER 7. INTERPRETER OPTIMISATIONS 73

the analysis environment is extended with a frame, via a call to AnalysisEnv.extend,

consisting of the variable bound to that expression. We create a new frame for each

variable so that it is visible in subsequent binding expressions. Next, the body of the

let expression is analysed in the extended analysis environment. Finally, a new let form

containing the analysed subexpressions is constructed and returned.

class Analyse {

public static Object analyse(Object exp, AnalysisEnv env) {

...

List form = (List) exp;

Object formId = (String) form.car();

List body = form.cdr();

if (formId.equals("let") {

List bindings = (List) body.car();

List newBindings = new List();

for (int n = 0; n < bindings.size(); n++) {

List b = (List) bindings.nth(n);

String var = (String) b.car();

List newB = new List(var, analyse(b.cadr, env));

newBindings = newBindings.append(new List(newB))

env = env.extend(new String[] {var});

}

Object newBody = analyse(body.cadr(), env);

return new List(formId, newBindings, newBody);

}

...

}

}

CHAPTER 7. INTERPRETER OPTIMISATIONS 74

With these changes made, we have completed the implementation of the interpreter’s

syntax analysis phase. To give an example of the output produced by the analysis phase,

we again return to the example program:

(let ((a (int 0))

(b (int 1)))

(apply (lambda (w x y)

(let ((y (+ a b))

(z (+ y (int 3))))

(+ x y b)))

(int 4) (int 5) (int 6)))

When this expression is passed to analyse, a form is produced in which all variables

have been replaced by their lexical addresses. In the following notation, a lexical address

is represented by the pair {f, s}, where f denotes the number of frames to skip, and s

denotes the frame’s slot number.

(let ((a (int 0))

(b (int 1)))

((lambda (w x y)

(let ((y (+ {2,0} {1,0})

(z (+ {0,0} (int 3))))

(+ {2,1} {1,0} {3,0})))

(int 4) (int 5) (int 6)))

Adding Lexical Addresses to the Evaluator

If the evaluator is to evaluate forms produced by the syntax analysis phase, it must be

altered to recognise and evaluate lexical addresses. Such an alteration requires only a simple

addition to the step method of the State class: if an expression is a lexical address, we

simply return the value at that address in the current environment.

public void step() {

switch (mode) {

case EVAL:

if (exp instanceof LexicalAddress) {

CHAPTER 7. INTERPRETER OPTIMISATIONS 75

val = env.lookup((LexicalAddress) exp);

mode = RETURN;

break;

}

...

}

The only other modifications to the interpreter necessary for it to use lexical addresses

are to the LetCont and ApplyCont classes, so they pass only an array of values to the

Environment.extend method.

With these modifications, we have an interpreter that uses a separate syntax analysis

and evaluation phase. In the syntax analysis phase, each occurrence of a variable in an

expression is replaced with its lexical address in the program structure. These changes

remove the need for environment operations to search the environment; environment op-

erations now directly access the environment by address. In addition, we changed the

implementation of environments from a simple linked list of bindings to a stack frame

implementation. We expect these changes to yield a more efficient interpreter.

Chapter 8

Evaluation of Interpreter

Optimisations

In this chapter we evaluate each of the potential optimisations of the interpreter imple-

mentation that were described in Chapter 7. We evaluate the changes to the interpreter

implementation by using benchmark programs: we measure and compare the time taken

by each version of the interpreter to evaluate a benchmark program.

We use two benchmark programs in our comparisons: tak and clicker. The tak

benchmark is a simple program designed to test the core functions of the interpreter. The

clicker benchmark, which was discussed extensively in Chapter 4, is a program designed

to be more representative than tak of realistic JLambda programs.

All of the measurements are performed on an unloaded machine with a 2.4GHz Intel

Celeron CPU and 256MB of main memory. All Java programs are compiled and run using

version 1.4.2 04 of Sun’s Java Development Kit. To measure the execution time of an

interpreter, we use the GNU time command to measure the total CPU time used by the

interpreter while evaluating a benchmark program. We record the execution time of each

interpreter-benchmark pair by performing the measurement 10 times and taking the mean

of the measurements.

We perform benchmark measurements for five versions of the interpreter, each with

different optimisations:

• No optimisations

• Interned strings

76

CHAPTER 8. EVALUATION OF INTERPRETER OPTIMISATIONS 77

• Interned strings and hash table dispatch

• Interned strings, hash table dispatch and continuation pools

• Interned strings and syntax analysis

8.1 The tak Benchmark

tak is Richard Gabriel’s publicly-available[7] implementation of the Takeuchi function.

The following is an implementation of tak in JLambda:

(define tak (x y z)

(if (not (< y x))

z

(apply tak (apply tak (- x (int 1)) y z)

(apply tak (- y (int 1)) z x)

(apply tak (- z (int 1)) x y))))

Examination of the tak function shows that it measures primarily (recursive) function

calls and environment operations. Because tak is function-call heavy, it provides a good

test of function call, recursion and environment operations. However, because it does little

besides function calls—it does not make use of the Java runtime facilities, for example—it

is not representative of most JLambda programs.

We include in our tests an implementation of tak in Java, and compare its execution

time to those of of the JLambda interpreters. The following Java class implements the tak

function:

class Tak {

static int tak(int x, int y, int z) {

if (x <= y) {

return z;

} else {

return tak(tak(x - 1, y, z),

tak(y - 1, z, x),

tak(z - 1, x, y));

}

CHAPTER 8. EVALUATION OF INTERPRETER OPTIMISATIONS 78

}

}

8.1.1 Performance Results

We test the five versions of the interpreter with six versions of the tak benchmark program.

Each benchmark program differs in the arguments that are passed to the tak function. The

Java implementation of tak is tested with the same sets of arguments that are used in the

other benchmark programs.

The six versions of the benchmark program are summarised in Table 8.1.

Benchmark Number Invocation of the tak Function
1 (apply tak (int 9) (int 6) (int 3))

2 (apply tak (int 12) (int 8) (int 4))

3 (apply tak (int 15) (int 10) (int 5))

4 (apply tak (int 18) (int 12) (int 6))

5 (apply tak (int 21) (int 14) (int 7))

6 (apply tak (int 24) (int 16) (int 8))

Table 8.1: Summary of the tak benchmarks

Figure 8.1 is a graph of the execution times of the tak benchmark programs for each

interpreter version, along with the execution times of the Java versions of the tak bench-

mark.

The performance results show that by interning the strings that store form IDs, we have

increased the speed of the interpreter. Similarly, the addition of the syntax analysis phase,

along with the replacement of variables with lexical addresses, has significantly increased

execution speed. However, both the addition of hash table dispatch and the addition of

continuation pools caused a decrease in the execution speed of the interpreter. We discuss

these results further in Section 8.3.

The conclusion we draw from tak benchmark performance results is that the most

efficient interpreter implementation of those tested is one that uses interned strings for

form IDs, and which uses a separate syntax analysis phase in which variables in expressions

are replaced by their lexical addresses.

The performance results also demonstrate that, not surprisingly, programs implemented

in JLambda execute significantly slower than equivalent programs implemented in Java.

CHAPTER 8. EVALUATION OF INTERPRETER OPTIMISATIONS 79

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6

ex
ec

ut
io

n
tim

e
(s

ec
)

benchmark number

No Optimisatons
Interned Strings

Interned Strings and Hash Table Dispatch
Interned Strings, Hash Table Dispatch, and Continuation Pools

Interned Strings and Syntax Analysis
Native Java

Figure 8.1: Execution times of the tak benchmark

8.2 The clicker Benchmark

For this benchmark we use clicker, which was presented in Chapter 4. clicker is a

small JLambda GUI program that uses Java’s Swing library to display a window; when the

mouse is clicked in the window, a small coloured circle is placed at the point of the click.

The implementation of clicker makes heavy use of Java’s run-time facilities; for example,

clicker registers event handlers by creating closures and assigning them to mouse click

events.

Since clicker requires mouse input we have written a driver program in Java to pro-

vide the necessary input. The driver program uses the java.awt.Robot class to send a

specific number of mouse click events to clicker’s window. Additionally, the rate at which

the mouse click events are submitted to the clicker program is held constant across all

benchmarks.

We include here the source code for the driver program. The following version of the

program delivers 84 mouse clicks to the clicker program.

import java.awt.AWTException;

import java.awt.Robot;

CHAPTER 8. EVALUATION OF INTERPRETER OPTIMISATIONS 80

import java.awt.event.InputEvent;

import java.io.IOException;

public class ClickerBenchmark {

public static void main(String[] args)

throws AWTException {

String version = args[0];

String command = "java -ea -cp " + version + " "

+ args[1] + " " + version + "Scheme/clicker.lsp";

try {

Runtime.getRuntime().exec(command);

} catch (IOException e) {

e.printStackTrace();

}

Robot robot = new Robot();

/*

* Before generating an event, wait until all events

* currently on the event queue have been processed.

*/

robot.setAutoWaitForIdle(true);

// Wait long enough for frame to appear.

robot.delay(3000);

int x = 45;

int y = 100;

for (int d = 0; d < 420; d += 5) {

robot.mouseMove(x + d, y + d);

robot.mousePress(InputEvent.BUTTON1_MASK);

robot.mouseRelease(InputEvent.BUTTON1_MASK);

}

CHAPTER 8. EVALUATION OF INTERPRETER OPTIMISATIONS 81

 0

 5

 10

 15

 20

 25

2001005020

ex
ec

ut
io

n
tim

e
(s

ec
)

number of mouse click events

No Optimisatons
Interned Strings

Interned Strings and Hash Table Dispatch
Interned Strings, Hash Table Dispatch, and Continuation Pools

Interned Strings and Syntax Analysis

Figure 8.2: Execution times of the clicker benchmark

}

}

8.2.1 Performance Results

We test the five versions of the interpreter with four different invocations of the clicker

benchmark program. Each invocation differs in the number of mouse click events that are

sent to clicker by the driver program. We measure the interpreter performance with 20,

50, 100 and 200 click events.

Figure 8.2 is a graph of the execution times of the clicker benchmark programs for

each interpreter version.

The results indicate that there is very little difference in the performances of the in-

terpreters when executing the clicker benchmark program. The only exception is the

interpreter that uses a syntax analysis phase—it shows superior performance as the num-

ber of mouse click events increases. Since most of the operation of the clicker program

is handled by the Java Swing library, the role of the interpreter in execution of the pro-

gram is comparatively small. Once the Swing objects have been created and displayed,

CHAPTER 8. EVALUATION OF INTERPRETER OPTIMISATIONS 82

the execution of the program is controlled by the Swing library’s event loop. The only

time JLambda expressions are evaluated by the interpreter during the event loop is when

a closure is invoked in response to a mouse click event. Since the closure that creates a

node in the clicker program is a relatively simple expression, we expect the performance

of the various interpreter versions to be similar.

The clicker benchmark performance results, like the tak benchmark performance re-

sults, demonstrate that the most efficient interpreter implementation of those benchmarked

is one that uses interned strings for form IDs, and which uses a separate syntax analysis

phase, in which variables in expressions are replaced by their lexical addresses.

8.3 Discussion of Performance Results

In this section we briefly discuss the benchmark performance results for each attempted

optimisation of the interpreter implementation.

8.3.1 Interned Strings

It is not surprising that the introduction of string interning to the interpreter has in-

creased its execution speed. Interning strings allows us to compare two strings by using

object equality operator, ==, instead of the String.equals method. The == operator

tests for object equality by checking whether two object references point to the same ob-

ject; the String.equals methods tests whether two strings are equal by comparing them

character by character. Clearly, the object equality operation is faster than a call to the

String.equals method.

8.3.2 Hash Table Dispatch

The addition of hash table dispatch, however, has decreased the execution efficiency of the

interpreter. We conclude that replacing string comparison dispatch by hash table dispatch

in the interpreter has introduced more operations than it has saved. Hash table dispatch

involves several operations: the hashing of a form ID; the retrieval of an object from a

hash table; and the invocation of the object’s form-handler method. In contrast, string

comparison dispatch involves only a number of if-else comparisons using object the equality

operator, and the invocation of a form-handler method.

CHAPTER 8. EVALUATION OF INTERPRETER OPTIMISATIONS 83

8.3.3 Continuation Pools

The situation for continuation pools is analogous to that of hash table dispatch. The

addition of continuation pools to the interpreter has introduced more operations than it has

saved. The performance results suggest that the book-keeping necessary to manage pools

of continuations is more expensive than the costs of on-demand creation and reclamation

of objects.

8.3.4 Addition of Syntax Analysis

The replacement of variables with lexical addresses has yielded an increase in the inter-

preter’s performance. Such a performance increase is consistent with our expectations.

Although the addition of the syntax analysis phase introduced some execution overhead

to interpreter, it allowed us to remove many of the operations involved in variable lookup

during the evaluation phase. Since the operations in the syntax analysis phase are per-

formed only once, while the operations in the evaluation phase may take place many times,

we have achieved a net gain in the execution efficiency of the interpreter.

Chapter 9

Conclusions and Suggestions for

Further Work

We have presented in this thesis an implementation of an interpreter for the JLambda

language. In addition, we have suggested, implemented and evaluated four potential opti-

misations of the implementation of the interpreter. Our performance measurements showed

that the greatest improvements to interpreter’s performance were achieved by interning the

strings representing the form IDs, and by introducing a syntax analysis phase, in which

variables in expressions are replaced by their lexical addresses.

The most important conclusion is that it is possible to implement, in a reasonably

straight-forward manner, an interpreter for a recursive target language using Java (a non-

tail recursive language) as the implementation language. Java’s object-oriented features

enable the continuation-passing transformation and register-machine transformation, both

of which are crucial to implement a recursive interpreter in a non-tail recursive language,

to be implemented conveniently.

A second conclusion is that the addition to the interpreter of a syntax analysis phase,

in which variables in expressions are replaced by their lexical address, yields a significant

increase in the interpreter’s performance. The addition of a syntax analysis phase is a pro-

cess that is not difficult, and does not complicate the interpreter’s implementation. Rather,

since it separates the process of evaluation into two distinct phases, the addition of a syn-

tax analysis phase yields an interpreter implementation that is simpler, and consequently

easier to understand and modify.

There are many more improvements to the interpreter implementation that are possible.

84

CHAPTER 9. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 85

For example, much of the error checking can be moved from the evaluation phase to the

syntax analysis phase.

A further improvement to the interpreter implementation would be achieved by choos-

ing a more efficient representation of expressions during evaluation. One possibility is the

representation of JLambda expressions by Java objects. The advantage of this represen-

tation is that dispatch on expression type could use the instanceof operator, which, we

expect, would afford a faster dispatch operation than the methods presented in this thesis,

so achieving the hoped-for benefits of implementing expressions as objects.

Bibliography

[1] Harold Abelson and Gerald J. Sussman. Structure and Interpretation of Computer

Programs. MIT Press, 2nd edition, 1996.

[2] K. Anderson, T. Hickey, and P. Norvig. SILK: A Playful Blend of Scheme and Java. In

Proceedings of the Workshop on Scheme and Functional Programming, pages 13–22,

September 2000.

[3] Alan Bawden and Jonathan Rees. Syntactic Closures. In Proceedings of the 1988

ACM Symposium of LISP and Functional Programming, pages 86–95. ACM Press,

1988.

[4] Per Bothner. Kawa – Compiling Dynamic Languages to the Java VM. In Proceedings

of the Usenix Annual Technical Conference, June 1998.

[5] William D. Clinger. Proper Tail Recursion and Space Efficiency. In Proceedings of the

ACM SIGPLAN 1998 Conference on Programming Language Design and Implemen-

tation, pages 174–185. ACM Press, 1998.

[6] Matthias Felleisen. The Calculi of Lambda-v-CS Conversion: A Syntactic Theory of

Control and State in Imperative Higher-order Programming Languages. PhD thesis,

Indiana University, August 1987.

[7] Richard P. Gabriel. Performance and Evaluation of LISP Systems. MIT Press, 1985.

[8] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi-

cation. Addison-Wesley, 2nd edition, 2000.

[9] Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised5 report on

the algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26–76, 1998.

86

BIBLIOGRAPHY 87

[10] I. A. Mason and C. L. Talcott. IOP: The InterOperability Platform & IMaude: An

Interactive Extension of Maude. In International Workshop on Rewriting Logic and

its Applications (WRLA 2004), Electronic Notes in Theoretical Computer Science.

Elsevier Science, 2004.

[11] Scott G. Miller. SISC: A Complete Scheme Interpreter in Java. Technical report,

Indiana University, January 2002.

[12] G. Plotkin. Call by Name, Call by Value, and the Lambda Calculus. Theoretical

Computer Science, 1, 1974.

