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Abstract

We describe a platform, IOP, for the interoperation of formal reasoning tools, and
an adaptation of Maude, IMaude, that utilizes this platform. Three applications of
IMaude and IOP to real world problem domains are described.
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1 The Aims

In order for formal tools to be more generally useful it is important that
the tools can interact with one another via simple, well defined, semantically
meaningful communication interfaces. In addition it is important for a formal
tool to provide natural user friendly means of interaction.

The Maude system [1,2] is a high performance system based on rewriting
logic with many advanced features. Currently the means of interacting with
Maude is via a command line interpreter. Typically, users that want to
connect Maude to other tools or provide alternative display mechanisms, must
do something ad hoc, for example with Perl scripts, Tcl/Tk, etc.

The IOP project is aimed at developing an infrastructure for allowing tools
to interoperate. It was motivated by the specific aim of making it possible for
Maude to communicate with other tools, including other instances of itself,
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web resources, visualization tools, theorem provers such as PVS, as well as
to read and write files, and execute shell commands. The IOP interaction
model is that of actors [3,4] communicating via message passing, with the
IOP registry serving as local post office. IOP comes with a basic set of actors
including a Maude actor, a PVS actor, a Graphics actor, and communications
actors that support sockets, file system access, and program execution. Ad-
ditional actors can be added quite easily. The Maude actor is an interactive

extension of Maude that we call IMaude. It is interactive in the sense that
rewrite computations are interleaved with communications with the environ-
ment, and the IMaude’s state persists across communications. IOP provides
the Maude programmer with a much richer modeling environment with sup-
port for developing visualization and animation of Maude specifications in
interesting ways, for exporting Maude modules to other tools (based on other
formalisms) for alternative analyses and visualizations, and for developing
notions of session state that can be saved and resumed. The reflective capa-
bility of Maude makes Maude well suited to programming such interactions
and has been crucial in our studies to date. Using the communication ac-
tors as a go-between, the Maude actor can talk to any tool that is capable
of interacting via an internet socket connection. Although the main actor
in the current IOP is the Maude actor, IOP also currently incorporates a
PVS actor, and the basic IOP infrastructure is independent of Maude and
could be used to endow other tools with communication capability. The IOP
manual, binaries for Linux and Mac OS X, and setup instructions are avail-
able at http://mcs.une.edu.au/~iam/IOP/ . The IMaude code is available
at http://www.csl.sri.com/~clt/IMaudeWeb/

The development of IOP has been largely driven by the particular needs
of several substantial applications. In § 2 we briefly sketch three of these ap-
plications: the Pathway Logic Workbench, Mobile Maude, and the SCRover.
We will then use these examples to motivate the subsequent description of
IOP. In § 3 we describe the IOP architecture. In § 4 we describe the basic
actors and rules for communication. In § 5 we describe the core set of Maude
modules that we use for programming IMaude applications. We conclude with
a discussion of future directions.

2 The Applications

The Pathway Logic workbench is the first and most substantial application
using IOP, serving as motivation and a testbed for the design and development
of the IOP interface and actors. We discuss this application in some detail,
and briefly discuss additional features used by two other applications.

2.1 The Pathway Logic Workbench

Pathway logic [5,6,7] is an application of Maude to modeling cellular networks—
collections of rules describing processes that transmit information (signal trans-
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duction) or transform chemicals (metabolism). Maude rules for network ele-
ments have a form equivalent to

rl[id]: p1 : l1 ... pk : lk => p1’ : l1’ ... pm’ : lm’

where pi : li is an occurrence, a protein or biochemical pi positioned within
a cell at the location li (membrane, nucleus, endosome ...). Once a set of rules
is represented in Maude, the biologist can use the Pathway Logic Assistant to
explore the model structure and to ask questions, such as: starting with a cell
containing particular proteins and chemicals (in particular locations) can a
state be reached matching a particular pattern. These can be answered using
execution, search, and model-checking in Maude, or by converting the model
to a Petri net and using Petri net analysis tools. The network, subnets, and
generated pathways can be visualized using network graphs—graphs with a
rule node for each rule, an occurrence node for each occurrence, and edges from
left-hand-side occurrences to the rule node and from the rule node to right-
hand-side occurrences. An interactive network graph has actions associated
either with the graph as a whole or with particular nodes. For example,
a rule node has an action that will display the Maude code for the rule. An
occurrence node in a subgraph can has an action that extends the subgraph by
adding any missing nodes and links associated the occurrence. An extendible
graph has action to undo the last extension. These actions allow a biologist
to incrementally explore a complex graph.
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Fig. 1. The Pathway Logic Workbench

A Pathway Logic workbench (figure 1) is being developed to integrate
the Maude network models, the Pathway Logic Assistant, and the various
auxiliary tools, such as the BioNet Petri net tool, the Dot graph drawing
tool, the IOP Graphics actor, and (in the future) Biological databases and
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web resources, and a GUI for model development. IOP is the underlying
infrastructure for the Pathway Logic workbench. We expect that this work-
bench architecture will be useful for many Maude based applications, adding
functionality and enriching the ability to visualize and interact with Maude
specifications.

The Pathway Logic Assistant is an IMaude program that serves as com-
mand interpreter and coordinator of interactions of Maude and other tools.
The IOP communications center (registry) routes requests to appropriate
tools, either sending messages directly to IOP actors or using the executor
actor to send requests via the underlying operating system and the Fileman-
ager actor to store data to be passed in a file. The Graphics actor is used to
display interactive graphs and other visualizations.

2.2 Mobile Maude

To experiment with the use of Sockets and Listeners we built a prototypical
mobile object example, using ideas from the Mobile Maude design [8]. Here
locations are different Maude actors each with a listener listening on some port
for messages. The Maude actor is an IMaude program that can be thought
of as an interactive metaobject containing a configuration of possibly mobile
objects as part of its state [9]. Each configuration contains a special actor for
handling requests to install an object arriving from elsewhere. When there is
a message to a remote actor in the base configuration, the metaobject extracts
it, opens a connection to the remote listener, and transmits the message. Cor-
respondingly, the receiving metaobject reads the message from its connection,
and delivers it to the base configuration. The metaobject only deals with send-
ing and receiving messages, not caring if the message is a normal base-level
message or if it transports a mobile object.

2.3 Animating Maude specifications: The SCRover

Providing a visual representation of Maude specifications of distributed sys-
tems (system state and evolution) is important to make the specifications
meaningful to non-experts, and also to help debug complex specifications.

As a first example, IOP is being used to develop visual, interactive rep-
resentations our model of the SCRover being developed as part of our NSF-
NASA project Formal Checklists for Autonomous Remote Agents [10,11]. The
objective of the project is to provide higher assurance for software for deep
space missions by developing a formal framework for specifying mission goals
and the elaboration of goals to goal nets consisting of primitive constraints
that correspond to device driver commands to be achieved at specified time
intervals.

Rover is visualized using a graphical object that knows its location and
orientation. In addition to responding to messages generated by mouse or
keyboard input, the rover object can receive messages from other IOP actors.
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Thus, like the IMaude actor for mobility, the graphics actor must provide for
messages to and from its contained graphical objects. For the initial case
study we defined an ad hoc syntax for messages to the rover graphical object
and the reactions are hardwired in Java code for the behavior of the rover
graphical object (represented as a Java object). Future work is to define a
more general syntax for describing active graphical objects. Another task is
to define module transformations that automatically add instrumentation for
animating object system behavior.

3 The Architecture

IOP’s design is based on the actor model of distributed computation [4]. IOP
consists of a pool of actors that interact with one another via asynchronous
message passing. The pool of actors is dynamic, it may grow or shrink as
time goes by. Actors can be initial actors, created at startup, or be created
by another actor already in the system in response to some event, such as
an actor receiving a message, or reacting to some external action, such as a
connection being made to a socket. The collection of actors created at startup
is easily configurable and new actors can be designed and added to the system.

An actor in IOP usually is simply a UNIX style process that has been
registered with the system according to a simple procedure. Part of this
registration process involves allocating three FIFOs, or UNIX style named
pipes, and redirecting the actor’s stdin, stdout and stderr file descriptors
to these special files [12].

However, not all actors are single processes, some consist of two processes.
For example, the actors that correspond to formal reasoning tools such as
Maude and PVS, usually consist of two processes: the process running the tool,
and a wrapper actor acting as a go-between for the tool and the underlying
message system.

There is no restriction on the language used to write an actor’s script or
executable. Some are written in C, some are written in Java, some are written
in Perl. One simply chooses the appropriate language for the desired task or
function that the actor is supposed to perform. Actors can be single threaded
or multi-threaded, each according to its needs. They can even consist of several
processes written in different languages. For example, the Graphics actor that
provides Maude, and any other actor that wishes it, with a graphical toolkit,
is written in Java, and requires a thin C process wrapper to interface with the
FIFOs.

Apart from the autonomous actors in the system, IOP consists of three
independent processes that interact. The main that creates and configures
the system, the registry, and a GUI front end.
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An Actor

An Actor

An Actor

The Registry
An Actor

A Two Process Actor

After startup the main acts mainly as a signal handler, ensuring clean
and graceful shutdown. The registry keeps track of the current actors, and
maintains the lines of communication between these actors. The GUI front
end provides the user with an easy means of sending messages to any of the
actors in the system. The upper part can be used to compose messages to
be sent to any of the IOP actors. A file of precomposed messages can be
loaded, and message edits can be saved. The lower part displays any output
from the actors that isn’t inter-actor communication (errors or messages to the
user). The main and registry are written in ANSI C using pthreads and the
UNIX Specification Version 3 [12], while the GUI front end is written using
Java’s Swing platform. Neither the main, nor the registry, nor the GUI are
considered as actors in the system, rather they are part of the communication
infrastructure. IOP currently runs on Linux, and Mac OS X. Once Maude
itself has been ported to the plethora of Windows platforms, a port to these
will be constructed, using [13]. The system is designed to be self contained,
robust, and extensible. Several different IOP’s can run on the same machine
without interfering with one another, they can even communicate with one
another if the need arises, as it does in the mobile Maude example.

The registry maintains a list of all the actors that are registered with it.
It performs several functions, and maintains three lines or forms of commu-
nication. The three forms of communication are: inter-actor communication,
messages sent from one actor to another; meta-actor communication, actors
notifying the registry of the birth or death of actors; and interface communica-
tion, communication between the registry and actors with the GUI front end.
Each type of communication has a dedicated infra-structure that supports it.
In the case of inter-actor communication, each registered actor in the system
has three FIFOs, in /tmp/, associated with it. For each actor in the system
there are three dedicated registry threads one to monitor each FIFO that is
associated with the actor’s stdin, stdout and stderr file descriptors. The
registry also has two FIFOs (again in /tmp/) that are used in various meta-
communications, such as the registering of a newly created actor, or from an
actor politely informing the system of its imminent demise. All files in /tmp/
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incorporate into their name the unique process identifier of the main process
associated with them, hence multiple IOP’s on the same machine do not inter-
fere with one another. Finally the registry communicates with the GUI front
end by using two socket connections established at startup.

Inter-actor communication is purely ASCII text, and is implemented in two
layers, the user layer, and the transport layer. In the transport layer a message
consists simply of a line of text representing a number (i.e an integer in base
ten), followed by that specified number of bytes. The user layer, implemented
on top of the transport layer, consists of the address of the target actor, the
address of the sending actor, followed by the body of the message, each on a
new line:

maude

graphics

show mauderule 25

This same message can be sent from the GUI by selecting Maude as the des-
tination, and sending the text (graphics show mauderule 23). Either way
the message is transmitted in the transport layer as the sequence of bytes:

33\nmaude\ngraphics\nshow mauderule 25\n

Simple libraries implement the user layer on top of the transport layer, and
allow for reliable cross platform and architecture independent communication.

4 The Actors

As we have mentioned IOP is configurable, and the wealth of actors in the
system depends on the desired application. In the examples discussed in § 2,
the important actors are the Maude actor, the Filemanager actor, the Executor
actor, the Socketfactory, Listener, and Socket actors, and the Graphics actor.
For a detailed description of each actor and the syntax of the message requests
they support see [14].

The Maude Actor.

The Maude actor consists of two processes, one running the Maude exe-
cutable, while the other, called the wrapper, acts as an intermediary between
Maude and the registry. Any error messages Maude emits are, like all other
actor’s error messages, redirected to the error and output text area of the GUI
front end. Maude’s output is interpreted by the wrapper, and then translated
to a format acceptable to the underlying inter-actor communication system.
The process of interpretation consists of replacing symbolic control characters
such as \n, \r, \t, \", and \\ by the appropriate control sequences themselves.
So for example the quoted identifier

"graphics\nmaude\n(string \"This is a string.\")"
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would be interpreted by the wrapper as three lines of text, and translated into
a form acceptable to the registry, which in turn would interpret it as a message
destined to the graphics actor. The graphics actor in turn would interpret it
as a request to display the string "This is a string." in a window:

The Filemanager Actor.

The Filemanager actor provides any other actor in the system with a uni-
form way to interact with the underlying file system. It accepts the requests
from any actor to read, write, or append to files, and responds with a reply to
the requesting actor with a message containing the appropriate information,
such as the result of the read, or the success or failure of the write or append.

The Executor Actor.

The Executor actor provides the other actors in the system with the ability
to execute any program they care to specify. The Executor actor forks off a
child process to execute the requested command, and once the program has
finished executing, the child process of the Executor actor replies with the exit
code of the requested execution. For example, the message (user gv foo.ps)

sent from the GUI to the executor actor would result in ghostview window
displaying the specified postscript file. The executor is used by the Pathway
Logic Assistant to display graphs using the GraphViz toolkit [15].

The Socketfactory, Listener, and Socket Actors.

This trio of actors, or more accurately classes of actors, allows any actor
in the IOP system simple structured access to the Internet. It is also our first
example of actors creating other actors in response to requests.

Initially, at startup, IOP contains a single Socketfactory actor. A Socket-
factory actor responds to two type of requests. It can create a client Socket
actor connected to a specified port on a possibly remote host, and if successful
replies with the name of the newly created socket actor. Or it can create a
Listening socket actor, listening for connections on a particular port, and if
successful it replies with the name of newly created listening actor. In both
cases, if unsuccessful, the Socketfactory replies with an appropriate failure
notification.

A Listener actor is created by a request from a client actor to the Socket-
factory. The created Listener actor’s main task is to listen on the appropriate
port, if a connection occurs it creates a new Socket actor for this connection,
and notifies it’s client actor of the name of this newly created actor. Other
than this, the only other thing a Listener can do is close itself in response to
a closing request. In response to a closing request the Listener actor closes
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the underlying operating system listening socket, notifies the registry of its
imminent demise, then exits.

A Socket actor is a simple interface to the underlying operating system’s
socket. An actor can ask a socket actor to write some number of bytes, read
some number of bytes, or close itself. In the case of a read request, the number
of bytes is taken to be an upper limit. The Socket actor blocks until some
bytes are available, it then replies with the number of bytes actually read, and
the bytes themselves. If the read fails, the requesting actor is notified. In the
case of a write request, the Socket actor attempts to write that number of
bytes to the underlying operating system socket.

The Graphics Actor.

The Graphics actor creates graphical objects that the user and other ac-
tors in the system can manipulate. Like the Maude actor the Graphics actor
is a two process system consisting of a POSIX C wrapper process and a sub-
servient Java process. The Java process is written using Joel Bartlett’s Ezd
package [16], updated by the first author to Java 2 and Swing, javax.swing.
Joel’s system uses the deprecated Java 1.0 event system, as well as the anti-
quated awt package.

The Graphics actor is a first step towards realizing a graphics algebra with
mappings between algebraic data types (as specified in Maude) and graphical
objects that have a related structure. Graphical objects are interactive and can
be used to interact with related Maude data structures. So far we have defined
the following graphical objects: Graphs, Menus, Text, Grids, Containers, and
Sprites. These objects are specified using a Lisp style syntax, and messages
sent to active graphical objects also have a Lisp style syntax.

As a sample we show a message to the graphics actor requesting creation
of a graph as part of a session with the Pathway Logic Assistant.

graphics

maude

(graph

(label qt)

(nodes

(node 0 ((label Glucose-out)(shape ellipse)(color lightCyan)))

(node 1 ((label Glut1-CMin)(shape ellipse)(color lightCyan)))

(node 2 ((label Glucose-CMin)(shape ellipse)(color lightCyan)))

(node 3 ((label Glut1-act-CM)(shape ellipse)(color lightCyan)))

(node 4 ((label 25)(shape box)(color white)

(onclick "maude\ngraphics\nshow mauderule 25"))))

(edges

(edge 0 4 ((color magenta)(label i)))

(edge 1 4 ((color magenta)(label i)))

(edge 4 2 ((color green)(label o)))

(edge 4 3 ((color green)(label o)))))

The resulting display is shown in figure 2. The onclick node annotations
are actions to execute when the user (shift-)clicks on the node. They specify
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Fig. 2. A pathway graph

a message to be sent by the Graphics actor. Thus (shift-)clicking on the node
labeled 23 causes a message to be sent to the Maude actor from the Graphics
actor, with request to show the Maude rule 23. Maude replies with a text
string which is to be displayed as shown in figure 3.

Fig. 3. The result of invoking the show rule action

5 IMaude

IMaude extends Maude to allow interactions with the environment to be in-
terleaved with steps of rewriting. IMaude can send messages to and receive
messages from other IOP actors (including the user) or communicate with
other systems via files or sockets.

IMaude begins with the LOOP-MODE module of core Maude.

mod LOOP-MODE is

protecting QID-LIST .

sorts State System .

op [_,_,_] : QidList State QidList -> System [ctor special (...)] .

endm

This module is the mechanism used to support building user interfaces by
providing a basic read-eval-print loop. A LOOP-MODE system has the form
[inQ,S,outQ] where inQ and outQ are lists of quoted identifiers (qids) and S

is the system state that is rewritten using application specific rules provided
in a module that includes LOOP-MODE. The state persists between input/ouput
actions until the loop is exited. inQ is a stream that receives input directed to
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the loop from standard input and outQ corresponds to a stream connected to
standard output. The Maude tokenizer converts the input byte stream into
a qid list (each qid represents a token) and conversely the output qid list is
converted to a byte stream by Maude.

To develop a user interface using LOOP-MODE one needs to define the State

data type and define rules for processing input from the input stream (see [2]
Chapter 11). In the case of core IMaude this is taken care of by the module
INTERACTIVE and its imported modules, which is the starting point for our
IMaude applications.

5.1 IMaude State

In IMaude a LOOP-MODE state is a pair consisting of a control component of
sort Control and a set of entries of sort ESet.

mod INTERACTIVE is

inc ENTRY .

inc CONTROL .

inc LOOP-MODE .

op st : Control ESet -> State .

... <application independent rules> ...

endm

The application independent rules are discussed below. Entries are used to
record results of reductions and rewriting requests for later use. An entry
associates an entry value, of sort EVal, with a pair consisting of a qid and
a qid list. The qid is the entry type, typically the LOOP-MODE command that
generated the value and the qid list is used to identify the entry amongst those
of the same type, often simply the command arguments. Entries (sort Entry),
with constructor e and entry sets (sort ESet) are declared (in the module
ENTRY) as follows.

sorts Entry ESet EVal .

subsort Entry < ESet .

op none : -> ESet .

op _;_ : ESet ESet -> ESet [ctor assoc comm id: none] .

op e : Qid QidList EVal -> Entry [ctor].

The sort EVal serves as the union sort for the different values to be recorded.
To avoid sort confusion we use conversion functions to map each sort of in-
terest to EVals. The module ENTRY defines a number of useful functions for
manipulating entries and entry sets, including functions to retrieve an entry
from, add an entry to, and remove an entry from an entry set. These functions
ensure that an entry set has at most one entry for a given entry type and ar-
gument list. In the LOOP-MODE setting, printing means producing a qid list to
put in the output queue. The function showESet(es:ESet) prints the entries of
the es:ESet, separated by newlines, using the function showEntry(ee:Entry).
The IMaude programmer is obligated to provide equations defining

showEntry(e(etype:Qid,qs:QidList,ev:EVal))
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for each entry type used. These are typically defined along with the command
(or commands) that create a given entry type as shown below for the setq

entry type.

The module ENTRY provides two subsorts of EVal: TermEVal and QEVal.
Elements of sort TermEVal are pairs consisting of a qid naming the module,
and a Term metarepresenting a term of that module.

sort TermEVal .

subsort TermEVal < EVal .

op tm : Qid Term -> TermEVal .

Elements of sort QEVal are coerced QidLists.

sort QEVal .

subsort QEVal < EVal .

op ql : QidList -> QEVal .

The control component of an IMaude system state is used to determine
when to respond to particular inputs. Inputs can generally be partitioned into
requests and replies. Typically a reply is expected in response to a request sent
by IMaude. The control component indicates when IMaude is waiting for a
reply. Some incoming requests can be handled at any time, others should not
be accepted if IMaude is waiting for a reply. At the moment, these requests
are lost (the environment should not have sent them). A more robust version
might queue them for later consideration. The module CONTROL declares the
sort Control, two constructors, and a function showControl that converts a
control element into a qid list for output.

sort Control .

op ready : -> Control [ctor] .

op wait4 : Qid QidList -> Control [ctor] .

op showControl : Control -> QidList .

eq showControl(ready) = ’ready .

eq showControl(wait4(mtype:Qid, args:QidList)) =

( ’wait4 mtype:Qid args:QidList ) .

The ready control indicates that IMaude is not waiting for anything. It is
the initial value of the control component. The wait4(id:Qid,why:QidList)

control, as currently used, indicates that IMaude is waiting for a reply from an
actor identified by id:Qid, where why:QidList contains information about the
request needing a reply and/or information about what to do when a reply is
received. Use of the wait4 control will be illustrated below.

The module INTERACTIVE provides a number of rules for processing appli-
cation independent commands. The following are some examples.

• (show control) prints the system control component, and sends the printed
representation to the user.

• (reset control) resets the control component to its initial state.

• (show entry <etype> <args>) prints the entry matching the type and ar-
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gument qids.

• (remove entry <etype> <args>) removes the entry completely matching
the type and argument qids.

• (setq <vname> <vids>) adds an entry e(’setq,<vname>,ql(<vids>)).

• (let <vname> <modname> <sortname> <term>) adds an entry
e(’let,<vname>,tm(<modname>,resT)), where resT is the result of meta-
parsing and meta-reducing the <term> list of qids in the module named by
<modname>.

As an example we give the rule for processing a setq request. We require
that a setq request only be accepted in a ready state, to prevent external
modification of the entry set while processing another request.

rl[setq]:

[’setq vname:Qid InQ, st(ready, es:ESet), OutQ]

=>

[nil,

st(ready, addEntry(es:ESet, ’setq,vname:Qid, ql(InQ))),

’user ’\n ’maude ’\n ’setq vname:Qid InQ ] .

Here we use Maude’s inline variable declarations. For example vname:Qid

declares a variable with name vname and sort Qid. Inline declarations are
completely local, and two inline variables are considered the same (within
an equation or rule) only if they have the same name and sort. The input
component of the system is set to nil to indicate that this input has been
processed and removed from the input buffer. The contents of the output
component will be removed and written to the output stream by Maude as
part of the LOOP-MODE semantics.

The equation for printing an entry of type setq is

eq showEntry(e(’setq, vname:QidList, ql(qs:QidList))) =

’setq vname:QidList qid(" = ") qs:QidList .

The operation qid converts a string to a quoted identifier. Note that we have
reused the variable name vname to declare a variable of sort QidList. This
was done to remind us that although the argument list part of an entry can
be any qid list, we expect that it will be a single qid, the variable name, for
an entry of type setq.

5.2 IMaude applications

To give a flavor of IMaude programming, we give sample rules from the Mobile
Maude application and the Pathway Logic application.

Mobile Maude extends the basic IMaude actor behavior with the ability
to support communication between its contained object and objects residing
in another Mobile Maude actor (or any other actor that understands the mes-
sage syntax). In particular Mobile Maude listens (using a listener socket) for
connections from other actors, reads a message from each new connection, and
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makes connections to other Mobile Maude actors to send messages. There is
a special entry of type conf in the Mobile Maude state, initialized at start
up, whose value is the metarepresentation of the object configuration it man-
ages. Messages to external objects are extracted from an object configuration
using a function getXmit and messages from external objects are delivered
using a function deliver. Both of these functions must be provided as part
of the specification of object configurations. In addition the base- and meta-
levels must agree on the format of object addresses. For this initial case study
addresses are triples of the form (host,port,local-id).

As an example, we show the Mobile Maude rules used to read a message
from an external object. We assume that a Listener actor has been created
and stored as an entry e(’setq,’listener,ql(lname:Qid)). When the re-
mote actor opens a connection, the receiver is informed of a new connection
with a message containing the name of the Listener actor, the message type
newConnection, and the name of the Socket actor created for the connection.
In response, a read message is sent to the new Socket actor from the Mobile
Maude actor. The Mobile Maude actor now waits for the Socket actor to
reply, with arguments specifying that the wait is for a read from a listener
connection.

rl[listener.newCnx]:

[lid:Qid ’newConnection socketName:Qid InQ,

st(ready, (es:ESet ; e(’setq, ’listener, ql(lid:Qid)))),

OutQ ]

=>

[nil,

st(wait4(socketName:Qid, (’listenercnx ’read)),

(es:ESet ; e(’setq, ’listener, ql(lid:Qid)))),

OutQ socketName:Qid ’\n ’maude ’\n ’read ’10000 ] .

A read reply consists of the Socket actor’s name, a read status, and the
result of the read inQ. A close message is sent to the Socket actor and the
Mobile Maude actor waits for a reply, remembering that it is waiting for a
close acknowledgement from the Socket actor. The read result is also stored
in the wait4 qid list.

rl[listener.readAck]:

[socketName:Qid readAck:Qid InQ,

st(wait4(socketName:Qid, (’listenercnx ’read)), es:ESet),

OutQ]

=>

[nil,

st(wait4(socketName:Qid,

(’listenercnx ’close readAck:Qid InQ )), es:ESet),

OutQ socketName:Qid ’\n ’maude ’\n ’close ] .

When a close acknowledgement is received, if all is well, that is if

readAck:Qid == ’readOK,

the read result with the first element removed (this is the number of bytes read)
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is put in the input position, as a command for Mobile Maude to interpret, and
the control part of the state is set to ready. If there is a problem, the user is
informed and the read result is discarded.

rl[listener.closeAck]:

[socketName:Qid closeAck:Qid InQ,

st(wait4(socketName:Qid,

(’listenercnx ’close readAck:Qid toks:QidList )),

es:ESet),

OutQ]

=>

(if ((readAck:Qid == ’readOK) and toks:QidList =/= nil)

then *** drop the count token

[rest(toks:QidList), st(ready,es:ESet), OutQ]

else

[nil, st(ready,es:ESet), OutQ

’user ’\n ’maude ’\n

’listenercnx readAck:Qid closeAck:Qid toks:QidList ’\n ] fi) .

A Pathway Logic model is a Maude module that specifies constants and
constructors for biochemicals present in cells of interest, and rules describ-
ing reactions that are the basic steps of metabolic and signal transduction
processes. The Pathway Logic Assistant is an IMaude actor that defines ad-
ditional data structures and operations to query and transform models, and
to visualize models and query results. One of the data structures is a DGraph,
a structure with nodes and edges each possibly augmented by annotations.
Annotations are used to record information that can be used for determining
how to render the graph, and what actions are associated with different graph
elements. The operation cseq2dg produces a DGraph from the computation
sequence resulting from a query asking for a path leading from an initial state
to a state satisfying some desired condition. This is done by implicitly trans-
forming the path into a Petri net-like computation, since there is a natural
representation of Petri nets as graphs.

The following rule is the rule in the Pathway Logic Assistant module used
to display such a graph. The graph must have been already generated and
saved under the name matching gname:Qid. It is retrieved using the function
findPetriG, and the function dgraph2graphix prints the graph in a form that
can be understood by the Graphics actor, adding annotations for actions and
display instructions such as colors and shapes of nodes and edges.

crl[display.petri]:

[ ’display ’petri gname:Qid InQ, st(ready,es:ESet), OutQ ]

=>

(if (pnetG:DGraph == mtDGraph )

then

[ nil, st(ready, es:ESet), OutQ

’user ’\n ’maude ’\n

’display ’petri ’no ’graph ’for gname:Qid InQ ]

else

[ nil,
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st(ready, es:ESet), OutQ

’graphics ’\n ’maude ’\n

metaPrettyPrint(bpMod,

mkStrConst(dgraph2graphix(pnetG:DGraph))) ]

fi)

if pnetG:DGraph := findPetriG(es:ESet, gname:Qid) .

The function mkStrConst converts its string argument into a quoted identi-
fier constant, processing special characters so that metaPrettyPrint produces
the desired string token. An example message sent to the Graphics actor by
an application of the above rule, and its display are shown in Section 4.

6 Related work

There are two aspects to the IOP/IMaude work. One is moving from a declar-
ative functional language to an interactive system while retaining a clean
semantics, and the other is interoperation of tools. Although we have not
emphasized the semantics aspect, we are relying on the basic ideas of interac-
tion semantics for actors [17,18] to give semantics to Maude actors, without
modifying the underlying Maude system. An alternative approach is the idea
of Functional Reactive Programming (FRP) [19], where a functional language
such as Haskell is extended with constructs such as Monads, Arrows, and
I/O to support interaction. The basic Haskell Library is then extended with
primitives for graphics (HGL), robot controllers, and so on. The IOP/IMaude
approach is to provide a mechanism for communication with tools or processes
providing additional services rather than extending Maude.

The ToolBus [20] is a software coordination architecture. The ToolBus uti-
lizes a scripting language based on process algebra to describe the communi-
cation between software tools, providing synchronous and a limited broadcast
forms of communication. To integrate a tool, an adapters must be written
that translate between the internal ToolBus data format and the data format
used by the individual tools, and adapts it to the ToolBus communication
protocols.

The IOP coordination model is simply asynchronous message passing tak-
ing strings to be the basic communication data. Building on the metalogical
expressiveness of Maude, IMaude provides the ability to program coordination
scripts as desired. The IOP wrapper for non-interactive tools such as Maude
or PVS is a rudimentary form of adaptor for input/output byte streams. Some
more advanced adaptors have been programmed in IMaude (for example con-
verting representations of graphs). In some cases generic adaptors could be
useful, and perhaps we will build on the ToolBus ideas. In the case studies
carried out so far, the choice of precisely what external representation to use
depends on context, graphs being a good example.

The Systems Biology Workbench (SBW) [21], is a modular, broker-based,
message-passing framework for communication between applications that aid
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in research in systems biology. While Pathway Logic is aimed at qualitative
models represented using rewrite rules, the SBW focus is on kinetic mod-
els represented using the SBML markup language (http://www.sbml.org).
SBW comes with a simulator, plotter, adaptors for external simulators, and a
generic simulation-control GUI interface. Future work in the Pathway Logic
project includes connecting the Pathway Logic Workbench to SBW.

7 Conclusions and The Future

We have described IOP, a communications infrastructure that manages a dy-
namic collection of actors including: basic communications actors, a Graphics
actor, and actors obtained by adapting existing tools to the communication
infrastructure. Currently both Maude and PVS have been adapted. We have
also described the IMaude module that support defining application specific
behaviors for the Maude actor. IOP is being used heavily in the Pathway
Logic Project to develop and experiment with models of biological networks
and processes. Its further development will also be motivated by its use in
several other current and pending Maude projects.

Ongoing and future work includes systematic development of Graphics ac-
tor and the algebra of interactive graphical objects; applications that make
use of the interoperation of Maude, PVS and other formal tools; further de-
velopment of IMaude; and development of an IOP developer toolkit.
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